“You can and musf vndersfond cwf;’fc;wa J

MPUTL

| . SEVEN Douines. -

First Edition.

SUMMARY OF THIS BooK

Man has created the myth of "the computer” in his own image,
or one of them: cold, immaculate, sterile, "scientific," oppressive.

N

Some people flee this image. Others, drawn toward it, have
joined the cold-sterile-oppressive cult, and propagate it like a faith.
Many are still about this mischief, making people do things rigidly
and saying it is the computer's fault.

?QW% Cpﬂi . . N

w gizmos which may be turned to any purpose, in any style. And so
’ N“\'E) '\'* a wealth of new styles and human purposes are being proposed and

tried, each proponent propounding his own dream in hls own very
@NN Theodov H Nelson. personal way.

Still others see computer= for what they really are: versatile

11 riahts reserved.

FIFTH PRINTING March '77
Copies available $7.00 for one,
$50. for ten (with order) OR
wholesale from: the distributors
702 S Michigan So Bend IN 46618

Any nitwit can unde
Unfortunately , due to ridiculous historical circumstances,
computers have been made a mystery to most of the world.
And this situation does not seem to be improving. You
hear more and more about computers, but to most people
it's just one big blur. The people who know about computers
often seem unwilling to explain things or answer your ques-
tions. Stereotyped notions develop about computers operating
in fixed ways--and so confusion increases. The chasm
between laymen and computer people widens fast and danger-
ously .

This book is a measure of desperation, so serious
and abysmal is the public sense of confusion and ignorance.
Anything with buttons or lights can be palmed off on the
layman as a ¢computer. There are so many different things,
and their dm'mncel n'c 20 impomnt. yet to the lay public
they are } d as "comp stuff," indi

and beyond uudor-tanding or criticism. It's asif| .
couldn't tell apart camera from exposure meter or | Z

or car from truck or tollbooth. This book is theref
to the premise that

EVERYBODY SHOULD UNDERSTAND COMPUTERS

It is intended to fill a crying need. Lots of everyday people
have asked me where they can learn about computers, and
I have had to sey nowhere. Most of what is written about
computers for the an is either unreadable or silly.
(Some exceptions are listed nearby; you can go to them
instead of this if you want.) But virtually nowhere is the
big picture simply enough explained. Nowhere can one

get a simple, soup-to-nuts overview of what computers

are really about, without technical or mathematical mumbo-

This book presents a panoply of things and dreams. Perhaps

some will appeal to the reader...

THE COMPUTER PRIESTHOOD

Knowledge is power and so it tends to be hoarded.
Experts in any field rarely want people to understand what
they do,and generally enjoy putting people down.

Thus if we say that the use of computers is dominated
by a priesthood, people who spatter you with unintelligable
answers and seem unwilling to give you straight ones,
it is not that they are different in this respect from any
other profession. Doctors, lawyers and construction engineers
are the same way.

But computers are very special, and we have to deal

with them everywhere, and this effectively gives the computer
priesthood a stranglehold on the operation of all large organiza-
tions, of government bureaux, and anything else that they
run. Members of Congress are now complaining about
control of information by the computer people, that they

t the information even though it's on computers.

is it seems a small matter that in ordinary companies

4" personnel can't get straight questions answered

ler people; but it's the same phenomenon.

s imperative for many reasons that the appalling

gap between public and p insider be d. As

the saying goes, war is too important to be left to the generals.
Guardianship of the P can no longer be left to a
priesthood. I see this as just one le of the cr

evil of Professionalism,* the control of aspects of society
by cliques of insiders. There may be some chance, though,
that Professionalism can be turned around. Doctors, for
example, are being told that they no longer own people's
bodies.** And this book may suggest to some computer
professionals that their position should not be as sacrosanct
as they have thought, either.

jumbo, complicated examples, or talking down. This book
is an attempt.

This in not to say that computer people are trying
to louse everybody up on purpose. Like anyone trying
to do a complex job as he sees fit, they don't want to be

(And nowhere have I seen a simple book explaining
to the layman the fabulous wonderland of computer graphics
which awaits us all, a matter which means a great deal bothered with idle questions and complaints. Indeed, probab-
M to me personally, as well as a lot to all of us in general. ly any group of insiders would have hoarded computers
’ That's discussed on the flip side.) just as much. If the computer had evolved from the telegraph
(which it just might have), perhaps the librarians would
have hoarded it conceptually as much as the math and en-
gineering people have. But things have gone too far.

People have legitimate complaints about the way computers
are used, and legitimate ideas for ways they should be
used, which should no longer be shunted aside.

Computers are simply a necessary and enjoyable
part of life, like food and books. Computers are not everything,
they are just an aspect of everything, and not to know this
is computer illiteracy, a silly and dangerous ignorance.

Computers are as easy to understand as cameras.
2 I have tried to make this book like a photography magazine-- In no way do I mean to condemn computer people
breesxy, forceful and as vivid as posrible. This book will in general. (Only the ones who don't want you to know
explain how to tell apples from oranges and which way what's going on.) The field is full of fine, imaginative
is up. If you want to make cider, or help get things right people. Indeed, the number of creative and brilliant people
side up, you will have to go on from here. known within the field for their clever and creative contri-
. butions is considerable. They deserve to be known as widely

as, say, good photographers or writers.

I am not a skillful programmer, hands-on person
or eminent professional; I am just & computer fan, computer
fanatic if you will. But if Dr¢ David Reuben can write about
sex I can certainly write about computers. I have written "Comp s are catching hell from growing multitudes
this like a letter to a nephew, chatty and personal. This who see them uniformly as the tools of the
is perhaps less boring for the resder, and certainly less regulation and suffocation of all things warm,
boring for the writer, w is daing this in a hurry. Like moist, and human. The charges, of course,

. [photqnphy magesing, it throws at you some rudiments are not totally unfounded, but in their most
in a'merry setting. Other things are thrown in so you'll sweeping form they are ineffective and therefore
get the sound of tham, even if the details are elusive. actually an acqui to the deh ization
(We learn most everyday things by beginning with vague which they decry. We clearly need a much more
impressions, but how encouraging these is not usually discerning evaluation in order to clarify the
felt to be respectable.) What I have chosen for inclusion ethics of various roles of machines in human
here has been arbitrary, based on what might amuse and affairs.”

give quick insight. Any bright highschool kid, or anyone

else who can stumble through the details of a photography

magazine, should be able to understand this book, or get Ken Knowlton

the main ideas. This will not make you a programmer or in "Collaborations with Artists--

a computer person, though it may help you talk that talk, * a Programmer's Reflections"
and perhaps make you feel more comfortable (or at least in Nake & Rosenfeld, eds.,

able to cope) when new machines encroach or your life. Graphic Languages

If you can get a ch to learn progr ing-- see the (North-Holland Pub. Co.),
suggestions on p. -- it's an awfully good experience for p. 399.

anybody above fourth grade. But the main idea of this

book is to help you tell apples from oranges, and which

way is up. I hope you do go on from here, and have made

& few suggestions. * This is a side point. I see Professionalism as a spreading
disease of the present-day world, a sort of poly-oligarchy

by which various groups (subway conductors, social workers,
bricklayers) can bring things to a halt if their particular

new increased demands are not met. (Meanwhile, the irrele-
vance of each profession increases, in proportion to its
increasing rigidity.) Such lucky groups demand more
in each go-round-- but meantime, the number who are
permanently unemployed grows and grows.

I am "publishing” this book myself, in this first

draft form, to test its viability, to see how mad the computer -
people get, and to see if there is as much hunger to understand
computers, among all you Folks Out There, as I think.
1 will be interested to receive corrections and suggestions
. for sybsequent editions, if any. (The computer field is

.. #ts own exploding universe, 80 I'll worry about up-to-dateness
- R thet time)

*+ Ellen Frankfort, Vaginal Politics. Quadrangle Books.
Boston Women's Health Collective, Our Bodies, Ourselves.
8imon & Schuster.

This side of the book, Computer Lib proper (whose title is nevertheless
the simplest way to refer to both halves), is an attempt to explain simply and
concisely why computers are marvelous and wonderful, and what some main
things are in the field.

The second half of the book, Dream Machines, is specially about fantasy
and imagination, and new techniques for it. That half is related to this half,
but can be read first; I wanted to separate them as distinctly as possible.

The remarks below all refer to this first half, the Computer Lib half

of the book.
—E
FANDOM'
With this book I am no longer calling myself a computer
professional . I'm a comp fan, and I'm out to make you

one. (All computer professionals were fans once, but people
get crabbier as they get older, and more professional.)

A generation of computer fans and hobbyists is well on

its way, but for the most part these are people who have

had some sort of an In. This is meant to be an In for those
who didn't get one earlier.

The puter fan is who appreciates the
options, fun, it , and fiendish f ion of computers.
Not only is the computer fun in itself, like electric trains;
but it also extends to you a wide variety of possible personal
uses. (In case you don't know it, the price of computers
and of using them is going down as fast as every other
price is going up. So in the next few decades we may be
reduced to eating soybeans and carrots, but we'll certainly
have computers.)

Somehow the idea is abroad that computer activities
are uncreative, as compared, say, with rotating clay against
your fingers until it becomes a pot. This is categorically
false. Computers involve imagination and creation at the
highest level. Computers are an involvement you can really
get into, regardless of your trip or your karma. They
are toys, they are tools, they are glorious abstractions.

So it you like mental creation, toy trains, or abstractions,

computers are for you. If you are interested in democracy :

and its future, you'd better understand computers. And
it you are concerned about power and the way it is being
used, and aren't we all right now, the same thing goes.

THE SOCIETY
Which brings us to our next topic.

There is no question of whether the computer will
remake society; it has. You deal with computers perhaps
many times a day-- or worse, computers deal with you,
though you may not know it. Computers are going into
everything, are intertwined with everything, and it's going
to get more and more so. The reader should have a sense
of the dance of options, the remarkably different ways
that computers may be used; by extension, he should come
to see the extreordinary range of options which confront
us as a society in our future use of them. Indeed, computers
have with a swoop expanded the options of everything.

But a variety of inconvenient systems already touch on
our lives, nuisances we must deal with all the time; and
1 fear that worse is to come. I would like to alert the reader,
in no uncertain terms, that the time has come to be openly
attentive and critical in observing and dealing with computer
systems; and to transform criticism into action. If systems
are bad, annoying and demeaning, these matters should
be brought to the attention of the perpetrators. Politely
at first. But just as the atmospheric pollution fostered by
GM has become a matter for citizen concern and attack through
legitimate channels of protest, so too should the procedural
pollution of inconsiderate computer systems become a matter
for the same kinds of concern. The reader should realize he
can criticize and demand;

THE PUBLIC DOES NOT HAVE TO TAKE -
WHAT'S BEING DISHED OUT.

AUTHOR'S CREDENTIALS

Association for Computing Machinery since 1964.

i

§

Cornell University Library
QA 76.N43

|
Wb :you can and must understan ii 3
&
i
!

3 1924 017 642 889 e

There is already a backlash against computers, and
the spirit of this anti-computer backlash is correct, but
should be directed against very specific kinds of things.
The public should stop being mad at "computers" in the
abstract, and start being mad at the people who make in-
convenient systems. It is not "the computer," which has
no intrinsic style or character, which is at fault; it is people
who use "the computer" as an to inconveni you,
who are at fault. The mechanisms of legitimate public
protest-- sit-ins and so on-- should perhaps soon be turned

. to complaint over bad and inhuman computer systems.

The question is, will the crummier trends continue?
Or can the public learn, in time, what good and beautiful
things are possible, and translate this realization into an
effective demand? I do not believe this is an obscure or
specialized issue. Its shadow falls across the future of
mankind, if any, like a giant sequoia. Either computer
systems are going to go on inconveniencing our lives, or
they are going to be turned around to make life better.
This is one of the directions that consumerism should turn.

I have an axe to grind: I want to see computers useful
to individuals, and the sooner the better, without necessary
complication or human servility being required. Anyone
who agrees with these principles is on my side, and anyone
who does not, is not.

THIS BOOK IS FOR PERSONAL FREEDOM,
AND AGAINST RESTRICTION AND COERCION.

That's really all it's about. Many people, for reasons of
their own, enjoy and believe in restricting and coercing
people; the reader may decide whether he is for or against
this principle.

A chant you can take to the streets:

COMPUTER POWER TO THE PEOPLE!
DOWN WITH CYBERCRUD!

. THE FUTURE, IF ANY

. Simply as a matter of citizenship, it is e;xsential to
understand the impact and uses of computers in the world
of the future, if any; and to have a sense of the issues about
computers that confront us as a people-- especially privacy
‘and data banks, but also strange new additions to our
economic system ("the checkless society"), our political
system (half-baked vote-at-home proposals), and so on.

I regret that there is not room to cover these here.

Various companies are seeking wide public support for

“ the sorts of things they are trying to bring about. Legislation

will be proposed on which the views of the public should
have a hearing. It is important that these be understood
sensibly by some part of the electorate before they are made
too permanent, rather than made matters of dumb assent.

Finally , and most solemnly, computers are helping
us understand the unprecedented danger of our future
(see "The Club of Rome," p.(%). The human race may
have only a short time left on earth, even if there is no war.
These studies must be seen and understood by as many
intelligent men of good will as possible.

THEREFORE

Welcome to the computer world, the damndest and
craziest thing that has ever happened. But we, the computer
people, are not crazy. It is you others who are crazy to
let us have all this fun and power to ourselves.

COMPUTERS BELONG TO ALL MANKIND.

B:A., philosophy, Swarthmore; graduate study U. of Chicago; M.A., sociology, Harvard. Mostly self-taught in computers. -
Member of editorial board, Computer Decisions magazine; listed in New York Times' Who's Who in Computers; member of =

Research assistant, Communication Research Institute, 1962-3. Instructor in sociology, Vassar College, 1964-6. -
Senior staff researcher, Harcourt, Brace & World Publishers, 1966-7. Consultant to Bell Telephone Laboratories, Whippany, N.J., 1967-8.
Consultant to CBS Laboratories, Stamford, Ct., 1968-9. Proprietor of The Nelson Organization, Inc., New York City, 1969-72.

Lecturer in art, instructional resources and computer science, U. Illinois at Chicago Circle, 1973-6.

Co-founder of the Itty Bitty Machine Co. computer store, Evanston, Illinois, 1976.

Venture Fund lecturer, Swarthmore College, spring 1977. PHOTO BY ROGER FIELD.

i B

]

77

-/

WHERE IT'S AT

Computers are where it's at.

Recently a bank employee was accused of
embezzling a million and a half dollars by clever
computer programming. His programs shifted
funds from hundreds of people's accounts to his
own, but apparently kept things looking innocent
by clever programming tricks. According to the
papers the program kept up nppearances by
redepositing the stolen t in each just
as interest payments were about to be calculated,
then withdrawing it again just after. ("Chief
Teller Is Accused of Theft of $1.5 Million at a Bank
Here." New York Times, 23 March 73, p. 1.)

The alleged embezzlement was discovered, not by
bank audit, but by records found on the premises
of a raided bookmaker.

In a recent scandal that has rocked the
insurance world, an insurance company appears
to have generated thousands of fictitious customers
and accounts by computer, then bilked other
insurance companies-- those who re-insured the
original fictitious policies-- by fictitious claims
on the fictitious misfortunes of the fictitious
policy-holders.

In April of 1973, according to the Chicago
radio, a burglary ring had a "computerized" list
of a thousand prospective victims.

There have been inst where dish t
university students, nevertheless able programmers,
were ablé to change their course grades, stored
on a central university computer.

It is not unheard of for ace programmers to
create grand incomprehensible systems that run
whole companies, systems they can personally play
like a piano, and then blackmail their firms.

A friend of a friend of the author is an ace
progr at the Pentagon, supposedly a private
supervising colonels. On days he is mad at his
boss, he says, the army cannot find out its strength
within 300,000 men. Or three million if he so

chooses.

This awkward state of affairs, obviously
spanning both the American continent and most
realms of endeavor, has come about for various
reasons.

First, the climate of uncomprehension leads
men in management to treat computer matters as
"mere technicalities"-- a myth as sinister as the
public notion that computers are "scientific"--
and abandon the kind of scrutiny they sensibly
apply to any other company activities.

Second, most_of today's computer systems are
inherently leaky and insecure-- and likely to stay
that way awhile. Getting things to work on them
involves giving people extraordinary and invisible
powers. (Eventually this will change, but watch
out for the meantime.)

-

The obvious consequence is simply for the
computer people to be allowed to take over
altogether. It may indeed be that computer people
—= the more well-informed and visionary ones,
anyway-- can see the farthest, and appreciate
most deeply. the better ways things can go, and
the steps that have to be taken to get there. (And
Boards of Managers can at least be partially assured
that hanky-panky at the lower levels will be
prevented, if men in charge know where the bodies
are buried.)

That seems to be how it's going. Examples:

The president of Dartmouth College, John
K ,isa t and a devel-
oper of one of the important computlng languages,
BASIC (seep. I}).

The new president of the Russell Sage Foun-
dation, Hugh Cline, used to teach computing at
Columbia.

It's probably the same in industry. In other
words, more and more, for better and for worse,
things are being run by people who know how to
use computers, and this trend is probably irre-
versible.

In some ways, of course, this is a sinister
portent. In private industry it's not so bad,
since the danger is more of embezzlement and
botch-up than of public menace. But then there's
the problem of the government. The men who
manage the information tools are more and more
in charge of government, too. And if we can have
a Watergate without computers, just wait. (See
"Burning Issues," p. §7)

The way to defend ourselves against computer
ple is to b ple ourselves.
Which of course is the point We must all become
computer people, at least to the extent that we have
already become Automobile People and Camera
People-- that is, informed enough to tell when one
goes by or when someone points one at you.

MANY MANSIONS

The future is going to be full of computers,
for good or ill. Many computer systems are being
prepared by a variety of lunatics, idealists and
dreamers, as well as profit-hungry companies and
unimaginative clods, all for the benefit of mankind.
Which ones will work and which ones we will like is
another matter. The grand and dreamy ones bid fair
to reorganize drastically the lives of mankind.

For instance, Doug Engelbart at Stanford
Research Institute has a beautiful system, called NLS,
that will allow us to use computers as a generalized
postoffice and publication system. From your com-
puter terminal you just sign onto Engelbart's System,
and you're at once in touch with lots of writings by
other subscribers, which you may call to your
screen and write replies to.

(These grander and dreamier applications are
discussed on the other side of this book.)

But the plain computer visions are grand
enough.

The great world of time-sharing, for instance.
("Time-sharing" means that the computer's time is
shared by a variety of users simultaneously. See
pP. 15.) If you have an account on a time-sharing
computer, you can sign on from your terminal
(see p. |Y) over any telephone, no matter where
you are, and at once do anything that particular
computer allows-- calling up programs in a variety
of computer languages, dipping into data on a
variety of subjects as easily as one now consults
a chart.

For instance, at Dartmouth College-- where
time-sharing is perhaps farthest advanced as a
way of life-- the user (any Dartmouth student, for
instance) can just sit down at a terminal and write
a simple program (in Dartmouth's BASIC language,
for instance) to analyze census data. Since Dart-
mouth has a complete file on its time-sharing system
of the detailed sample from the 1970 census, the
program can buzz through that and report almost
immediately the numbers of divorced Aleuts or
boy millionaires in the sample, or (more signifi-
cantly) the relative incomes of different ethnic
groups when categorized according to the ques-
tioner's interests.

But simple time-sharing is only the beginning.
Networks of p 'S are now ing into being.
Most significant of these is the ARPANET (financed
by ARPA, the Defense Department's Advanced
Research Projects Agency, it is nonetheless non-
military in character). Dozens of large time-sharing
computers around the country are being tied into the
Arpanet, and a user of any of these can reach dir-
ectly into the other computers of the network--
using their programs, data or other facilities.
Arpanet enthusiasts see this as the wave of the
future.

MINI MANSIONS

But while computers and their combinations
grow bigger and bigger, they also grow smaller
and smaller. A complete computer the size of an
Ored bookie is now availabl d for
twentyfive years (and very cxponaive) But its
actual heart, the Intel microprocessor, is only
sixty bucks now, and just wait (see Microprocessors,
p-YY). By 1980 there should be as many pro-
grammed and programmable objects in your house
as you now have TVs, radios and typewriters;
that's a conservative estimate. But just what these
devices will all be ‘doing-- ah, there's the quesﬂon
that has many people talking to th lves.

OTHER COMING THINGS?

There are a lot of tall stories about what
computers will do for the world. Among the most
threatening, I think, are glowing reports of
"scientific" politics (don't you believe it). We
hear how computers will bring "science" to govern-
ment, helping, for example, to redraw the lines of
election districts. (See Cybercrud, p. § .)

Then you may also have heard that computers
are going to be our new tors and i
tutoring us, chatting with us and perhlpa Iulllng us
to sleep—- like Hal in 2001. Worried? Good.
(See "The God-Builders," flip side.) (». bh I‘L)

S —D

CHOTZPAH DEPACTMENT

A college student broke through the security of the
Pacific Telephone computer system from a terminal and,
according to Computerworld (6 June 73), stole over a
million dollars worth of equipment by ordering it
delivered to him! (Penthouse, December 73, claims he
was in highschool and it was only nine hundred thousand,
but you get the idea.)

After serving a few weeks in jail, he has formed
his own p - rity Iting pany

More power to him.
™

T ———y
The new breed has got to be watched.

This is the urgency of this book. Remember
that the man who writes the payroll program can
write himself some pretty amazing checks-- perhaps
to be mailed out to Switzerland, next year.

From here on it's computer politics, computer
dirty tricks, computer wonderlands, computer
everything.

For anyone concerned to be where it's at,
then, this book will provide a few suggestions.
Now is the time you either know or you don't.

Enough power talk. Knowledge is power.
Here you go. Dig in.

LESSON
GETTING' THINGS STRAIGHT

The greatest hurdle for the beginner (or
"layman") is making an effort to grasp particulars
of that which he hears about.

A. WHAT IS ITS NAME? Every system or
proposal or project has a name of some sort. Make
an effort to learn it, or you're stuck trying to refer
to "that computerish thing."

(And don't be a snob about acronyms, those
all-cap names and terms sprung from the foreheads
of other words, like ILLIAC and PLATO and CAI.
There's a need for them. Short words are too
general to use for names, and long phrases are
too unwieldy.)

B. IN WHAT PARTICULAR WAY DOES IT
EMPLOY THE COMPUTER? For record-keeping?
For looking stuff up quickly or fancily? For
searching out combinations? For making up combi-
nations and testing their properties? For enacting
complex ph ? As aut tic typewriters?
To play music, or just to store the written notes?

It is hoped that you will become sensitive
to these distinctions, and be able to understand and
remember them after somebody explains them.

Otherwise you're stuck just referring to
"that computer business," and you're in with the
rest of the sheep.

(I\culqul) -—-)

People ask me often where they can learn
about "science." As in all fields, maga-
zines are usually the best sources of
general orientation.

Science Digest is kind of helpful for a start,
although unfortunately they print summaries
of every fool study that generalizes to the
hearts of all humanity from two dozen lowa
State freshmen.

Scientific American is the favorite. Some stuff
is hard to read but some ,isn't; the pic-
tures and diagrams are terrific.

Science & Technology magazine seems to me
one of the better ones-- breezy, informa-
tive, not trivial.

Science magazine is read by most actual scien-
tists, and if you have a lively curiosity
and can guess at the meanings'of words,
will tell you an incredible amount. (This
is a main source for the science articles
in the New York Times, which in turn...)
Their articles on politics of science, and
the future, are very interesting, important,
and depressing. You have to join Am. Assn.

for the Adv t of Sci » Washington,
D.C.
Daniel S. Greenberg's Sci and Gov t

Report (sorry-- $35 a year) is what really
tells it. Greenberg is the man who knows,
both what is shaping up in science and
the insane governmental confusions and
floundering responses and grandstanding
and pork-barrel initiatives...

Greenberg is, incidentally, one of
the finest writers of our time and a great

f25000 (nr-s-)

§ mcvestce

G-tooTeabinet 7

fls‘,ooo_@r-s?)

.
3

£5,000(7or-ge)(g;_.‘t;j
¥3000 (-

i

» ’ v
= b,
3 _
) .\'}

% o

ASPECTS OF THIS BoeK

The explanations-- not yet fully debugged-- are
intended for anybody. The listings of expensive products
and services are intended not only as corroborative detail,
for a general sense of what's available, but also for
business people who might find them helpful, for affluent
individuals and clubs who want to try their hand, and
finally as a box score of how the prices are coming down.
Because we are all going to be able to afford these things
pretty soon.

T T2

?

’8‘0041
oo P g

uvmmkl.
Chops, even

ko 1765 P [

This diagram shows the amazing and unique way prices
drop in the computer field. The prices shown are for the first
minicomputer, the PDP-5 (and its hugely popular offspring, the
PDP-8); but the principle has held throughout the field, and the
downward trend will probably accelerate due to the new big
integrated circuits.

Another example: an IBM 7090, a very decent million-dollar
computer in 1960, was put up for sale at a modish Parke-Bernet
"used computer auction" in 1970. If I remember aright, they
could not get a $1000 bid, because today's machines are so much
smaller, faster and more dependable.

THE AMAZING TREND

WHERE IT'S AT

IN THIS BooK

2 INTRO

4 "Where It's At"

6 Sources of Information

8 CYBERCRUD

9 THE MYTH OF THE COMPUTER

10 The Power and the Glory

11 THE DEEP DARK SECRET
(Computer Basics Reduced
to One Easy Page)

12 THE NEW ERA

13 INTERACTIVE SYSTEMS

14 TERMINALS

15 COMPUTER LANGUAGES: Prelude

16 1. BASIC

18 2. TRAC® Language

22 3. APL

26 DATA STRUCTURES

27 Binary Patterns

30 COMPUTER LANGUAGES: Postscript

32 ROCK BOTTOM: Inner Languages
of Computers;
Computer Architecture

34 BUCKY'S WRISTWATCH, a sample
machine-language program

35 The Assembler

36 Your Basic Computer Structure:

) THE MINICOMPUTER

38 BIG COMPUTERS

40 GREAT COMPUTERS: Sketches
of Some Specific Machines

43 List of Mini Makers

44 MICROPROCESSORS
(The New Third Kind
of Computer)

45 ADVANCED PROGRAMS

45 OPERATING SYSTEMS

45 TIME-SHARING

46 COMPUTER PEOPLE

47 Program Negotiation

47 Suggestions for Writers

48 Fun and Games

50 How Computer Stuff is
Bought and Sold

51 How Computer Companies are
Financed, Sometimes

52 IBM

57 Digital Equipment Corporation

57 Peripherals for Your Mini

58 SIMULATION

58 OPERATIONS RESEARCH

58 GREAT ISSUES

58 MILITARY USES OF COMPUTERS

59 The ABM System

60 DNA

62 DAMN THAT COMPUTER!

64 STUFF YOU MAY RUN INTO

68 THE CLUB OF ROME

THE BUCK STOPS HERE

Everywhere in the world people can pretend

humorist. s YQQ
Science and Government Report, '
Kalorama Station (really?), Box 21123, Mhee!/
Washington, D.C. 20009. ere we d’o/
This is the wall that the handwriting :
is on. TY“ ce
' A
Nﬂeaﬁ lTS *T; U' S s EvKor'e ,USSR —>
Io f' amMery
o Dovtmelt, : ""*r'fafrww
L} Q:; D‘h
SattLake ¢ Gt v 6\'13’ BOSYON AREN
t:m?“”%,q Er‘ folls . d)& mzsc sow of DEC)
LR @ *3:*:-) < MITRE frme 4‘:{3
Ok "-mr (;: N
¢ c"‘r* I‘uot, Ddewve *6E % 4“3 fous (sbovafories
T Arhifica) fd?u.u bknfor)
e sty |
it o ST N
A ent
¥ripludvered ALl '°“'-$ AN 7 5 il
n\r Rfd . Sfﬂ\ﬁml Onivers! rocamer . U"‘}:“E:: SWN“) N4 T-oul Gol Kewifer 13M “\%'3.0:\
Mw"“ 1;?.. m..ym’ TSTEM r...)n.gm:i e, Sl Mans
. w. lrion bh h) ‘l-wlm lu»zé‘:‘(v?' /C»"nf Mkk e
B Tt iy =N
. U\vv. 15 Ga|feek u.e"."g B Wi (2 r.a. ““1 Brok
mEIL
- Rond Cony. Helwie (ri»:: >
. S)xv. (oom 41.“21 RCSTSTC M:'&uv: P
* Aeve, 1) 3 00, i
LA AREAN \- ve:t.? G = Aﬂi‘f‘{ tod)
: ﬂtdupnuvt AKPA W D C. A fic Coufor
O/ Erre
* O-Texag Beresv of B -
3 G« fau's Mop Rriyheng s 3 tg*rmd Rovmde Servie
of Sowe e :rr 4@7 loaﬁ"" Gy, Nt
har * Boy fn] Buw J?"b,w"m"‘ (v
The phw Tlpr dplu\("’r " mv:mf,,,, ‘g“‘“) “‘vs
Iem N"“ g’]‘h‘\l Drvisien,
o - GUSI‘UQSS

that your ignorance, or position, or credentials, or
poverty, or general unworthiness, are the reasons
you are being pushed around or made to feel small.
And because you can't tell, you have to take it.

And of course we can do the same thing with
computers. Yes, we can do it in spades. (See
"Cybercrud," p. 8.) But many of us do not want to.
There has to be a better way. There has to be a
better world.

Computer. (Formerly IEEE Computer Group OME
6 News.) $12/yr. Thoughtful, clearly

written articles on high-level topics.
Quite a bit on Artificial Intelligence G@ wK & KT. c LES
(see flip side). IEEE Computer Society,
O UK 16400 Ventura Blvd., Encino CA 91316. F~°K BCG ' "N{KS
m T- 0 w dc Here are some other magazines that may
l interest you. No particular order. The best review of what's happening lately, by

none other than Mr. Whole Earth Catalog

PCC. Delightful educational/counterculture himself: Stewart Brand, "Spacewar:

There are several major places you get infor- tabloid emphasizing computer games Fanatic Life and Symbolic Death among
mation in the computer field: friends, magazines, and fun. Oriented to BASIC language. the Computer Bums." Rolling Stone, 2
bingo cards, conferences and conference proceedings. $4/yr. from People's Computer Com- December 72, 50-56. He visited the most

pany, P.O. Box 310, Menlo Park, hotshot places and reports especially on
FRIENDS. CA 94025. the fun-and-games side of things.

Friends we can't help with. But you might Computing Reviews. Prints reviews, by Gilbert Burck and the Editors of Fortune, The

make some at conferences. Or join a computer club? individuals in the field, of most of the Computer Age. Harper and Row. Ignore
serious computer articles. Useful, but the ridiculous full title, The Computer Age

MAGAZINES . subject to individual biases and gaps. and Its Potential for Management; this book
(See ACM, below.) has nothing to do with management, but is

The principal magazines are (first few listed a nice general orientation to the field.
roughly by degree of general interest): The New Educational Technology . $5/yr.

Presumably concentrates on activities Thomas H. Crowley, Understanding Computers.

Datamation. $15 a year or free. The main of its publisher: General Turtle, Inc., McGraw-Hill. This is the most readable and

computer magazine, a breezy, clever 545 Technology Square, Cambridge, straightforward introduction to the techni-
monthly. Lots of ads, interesting arti- MA 02139: wonderful computer toys for calities around.
cles the layman can read with not much schools and the well-heeled.
effort. Twits IBM. , Jeremy Bernstein, The Analytical Engine. Random
Subscriptions are $15 if you're The Honeywell Computer Journal. Something 3;-louse, 1964. History of computers, well told,
not a computer person, free if you are. like $10 a year. Honeywell Information and the way things looked in 1964, which
Datamation, 35 Mason St., Greenwich Systems, Inc., Phoenix, Arizona. wasn't really very different.
CT 06830. Showcase magazine of miscellaneous
content; readable, nicely edited. Has Donald E. Knuth, The Art of Programming. (7 vols.)
Computer Decisions. Some $7 a year or free. unusual practice of including microfiche A monumental series, excellently written and
Some nice light articles, as well as (microfilm card) of entire issue in a widely praised, for anyone who wants to dig
helpful review articles on different pocket. in and be a serious programmer. Three of
subjects. Avoids technicalities. the seven volumes are out so far, at about
Computer Decisions, 50 Essex St., IBM Systems Journal. Showcase technical twenty bucks apiece. Vol. 1: Fundamental
Roselle Park NJ 07662. journal of miscellaneous content, Algorithms. Vol. 2: Seminumerical
especially arcana about IBM products. Algorithms. Vol. 3: Sorting and Searching.

Computers and Automation. Avoids techni- $5/yr. IBM, Armonk, NY 10504. Addison-Wesley . -

calities but quite a bit of social-interest

stuff. Nobody gets it free; something IBM Journal of Research and Development.

like $7.50 a year. Berkeley Enter- Showcase technical journal of miscel- BUMMERS

prises, Inc., 815 Washington St., laneous content. $7.50/year. IBM, .. R . .

Newtonville, Mass. 02160. Armonk, NY 10504. This is perhaps a minority ylew. but I think
any introduction to computers which makes them

Computerworld (actually a weekly tabloid Journal of the ACM. A highl . seem i.ntrinsically mathematical is m'isleading.

paper). Not free: $9 a year. More . —_— =0T ighly technical, math- Historically they began as mathematical, but now
up-to-the-minute than most people kJ’ 0((‘,5\") Orldentetd journal. Heavy on graph theory this is simply the wrong way to think about them.
have time to be. Computerworld, ;:l pattern recognition. (See ACM, Same goes for emphasizing business uses as if
Cire. Dept., 797 Washington St., ow.) that were all.

Newton, Mass. 02160.

Digital Design. $15 or free. About computer We will not name here any of the various

. arts and designs. Digital Design i 1 hlet: d books which stress
Computing Surveys. Excellent, clearly pa 2igital Design, . disagreeable pamphlets an !

written introductory articles on a S:scs I:);‘I;G » 167 Corey Road, Brookline, these aspects and don't make things very clear.

variety of subjects. Any serious

beginner should definitely subscribe DABOUT FREE SUBSCRIPTIONS. Many of the

Infosystems. Aspiring mag. $20 or free.

to Computing Surveys. (See ACM, Hitchcock Publicatons, P.O. Box 3007 magazines are free to "qualified" readers, usually
below .) Wheaton, I11. 60187. T ' those willing to state on a signed form that they
¢ the ACM. High-cl influence the purchase of computers, computer ser-
Communications of the . High-class . P vices h d the liki Th K oth
! of the : Think. T , punch cards, or the like. (They ask other
N CAQ w journal about theoretical matters and _n—pre:;sxnfb;heflzgt:t;g:: orsg:)n. questions on the form, but whether you influence
<4 N\- events on the intellectual side of the or br]tf IBM cusiomers purchase is usually what decides whether they
field. (See ACM, below.) prospects. » Armonk, NY 10504. send you the magazine.) It is also helpful to have
3 . a good-sounding title or company affiliation.
Computer Design. $18/yr. or free. Concen- There are also expensive (snob?) magazines,
trates on parts for computers, but also bought by executives. BINGO CARDS.
tells technical details of new computers
and peripherals. Computer Design, Computer Age. $95/yr. EDP News Services These are little postcards you find in all the
Circulation Dept., P.O. Box A, Inc., 514 10th St. N.W., Washington magazines except the ACM and company ones. Fill
Winchester, Mass. 01890. DC 20004. in your name and an attractive title ("Systems
. X . . Consultant" or "consultant" is good-- after all,
Data Processing magazine. Oriented to Computer Digest. $36/yr. Information Group, someday someone may ask your advice) and circle
conventional business applications of 1309 Cherry St., Philadelphia PA 19107. the numbers corresponding to the ads that entice
computers. $10. North American . . you. You'll be flooded with interesting, expensively
Publishing Co., 134 N. 13th St., Data P_rm Digest. $51/yr. 6820 printed, colorful, educational material on different
Philadelphia, Pa. 19107. la Tijera Blvd., Los Angeles CA 90045. people's computers and accessories. And note that
senders don't lose: any company wants its products
known.

Hey now, here's a magazine called Computopia. Only $15 a year. Unfortunately in Japanese.

) 2 s However, a postoffice box is good, as it helps
Computer Age Co. Ltd., Kasumigaseki Bldg., Box 122, Chiyoda-Ku, Tokyo, Japan.

to avoid calls at home from salesmen, wasting their
time as much as yours. If you are in a rural-type
area where you can assume a company name with no
legal difficulties, so much the better.

PORULAR. COMpUTRRS

That the field has not been popularized by its
/" better writers may simply come from an honest doub.
that ordinary people can understand computers.

" "
COMVUTE(Tér: — A’ WA'KVIVG- I dispute that. Through magazines, millions

of Americans have learned about photography. Through

A number of inexpensive gadgets purport to the popular science-and-mechanics type magazines,
teach you computer principles. Many people have been and more recently the electronics magazines, various
disappointed, or worse, made to feel stupid, when they other technical subjects have become widely understood.
learn nothing from these. Actually the best these things i
really can do is give you an idea of what can be done So far nobody has opened up computers. This
with combinations of switches. From that to learning is a first attempt. If this book won't do it another one
what computer people really think about is a long, long will.
way.

Y And you better believe that Popular Computers
J magazine is not very far away. Soon a fully-loaded
J minicomputer will cost less than the best hi-fi sets.

In a couple of years, thousands of individuals will
own computers, and millions more will want to. Look

out, here we go.

Woops, here it is. Popular Computing, $15 a year
($12 if prepaid), Box 272, Calabasas, CA 91302.

THE MAIN COMPUTER ORGANIZATIONS

ACM, the Association for Computing Machinery .
This is the main computer professional
society; the title only has meaning histor-
ically, as many members are concerned not
with machinery itself, but with software,
languages, theories and so on.

If you have any plans to stick with
the subject, membership in the Association
for Computing Machinery is highly recom-
mended. ACM calls itself "The Society of
the Computing Community." Thus it properly
embraces both professionals and fans.

Dues for official students are $8 a year,
$35 for others, which includes a subscription
to Communications of the ACM, the official
mag. Their address for memberships and
magazines is ACM, B.O. Box 12105,

Church St. Station, New York, NY 10249.
(The actual ACM HQ is at 1133 Ave. of the
Americas, New York, N.Y. 10036.)

They have stacked the deck so that
if you want to subscribe to any ACM maga-
zines you'd better join anyway. Here are
the year prices:

Member Non-Member
Communications of the ACM free $35
Computing Surveys $7 $25
Computing Reviews $12.50 $35
Journal of the ACM $7 $30

The one drawback to joining the ACM
is all the doggoned mailing lists it gets you
on. It's unclear whether there's anything
you can do to prevent this, but there oughta
be.

SIGs and SICs. For ACM members
with special interests (and we all have them),
the ACM contains subdivisions-- clubs within
the club, of people who keep in touch to
share their interests. These are called SICs
(Special Interest Committees) and SIGs
(Special Interest Groups). There are such
clubs-- SICs and SIGs-- in numerous areas,
including Programming Languages, Computer
Usage in Education, etc. Encouraging these
subinterests to stay within ACM saves a lot
of trouble for everybody and keeps ACM the
central society.

AFIPS.

AFIPS is the UN of computing. They
sponsored the Joints, and now sponsor the
NCC. Just as individuals can't join the UN,
they can't join AFIPS, which stands for
American Federation of Information Proces-
sing Societies. Depending on your special
interests, though, you can join a member
society .

The constituent societies of AFIPS are,
as of June 1973: (If any turn you on, write

AFIPS for addresses: AFIPS, 210 Summit Ave.,

Montvale NJ 07645.)

¥ ACM: the Association for Computing Machinery.

IEEE, the Institute of Electrical and Electronics
Engineers. This is the professional society
of electronics guys.

Simulation Councils. This is the professional
society for those interested in Simulation
(see p.5&).

Association for Computational Linguistics. (Where
language and computer types gather.)

American Association of Aeronautics and
Astronautics.

American Statistical Association.

Instrument Society of America.

Society for Information Display. (See flip side.)

American Institute of Certified Public Accountants.

American Society for Information Science. (This
group is mainly for electronified librarians
and information retrieval types-- see
flip side.)

Society for Industrial and Applied Mathematics.

Special Libraries Association.

Association for Educational Data Systems.

IFIP. This is the international computer society.
Like AFIPS, its members are societies, so
joining ACM makes you an IFIP participant.

IFIP holds conferences around the
world. Fun. Expense.

THE SPRING JONT

1S No MORE,

CONFERENCES.

Conferences in any field are exciting, at least
till you reach a certain degree of boredom with the
field. Computer conferences have their own heady
atmosphere, compounded of a sense of elitism, of
being in the witches' cauldron, and the sure sense
of the impact everything you see will have as it all
grows and grows. Plus you get to look at gadgets.

Usually to go for one day doesn't cost much,
and at the bigger ones you get lots of free literature,
have salesmen explain their things to you, see
movies, hear fascinating (sometimes) speakers.

THE JOINTS! The principal computer confer-
ences have always been the Spring Joint
Computer Conference, held in an
Eastern city in May, and the Fall Joint
Computer Conference, held in a Western
city in November (the infamous Spring

Joint and Fall Joint, or SJCC and FICC).

In 1973, because of poor business the
previous year, the two were collapsed
into one National Computer Conference
(NCC) in June (Universal Joint?) The
Joints have always been sponsored by
AFIPS (see below). The National
Computer Conference will henceforth
be annual, at least for a while.

The cost of attending is high--
while it's just a couple of dollars to
look at the exhibits, this rises to
perhaps fifteen dollars to go to the day's
technical sessions or fifty for the week
(not counting lodging and eats)-- but
it's very much worth it. The lower age
limit for attendees is something like
twelve, unfortunately for those
with interested children.

Other important conferences: the annual ACM
conference in the summer; BEMA
(Business Equipment Mfrs. Assn.)
in the fall and spring (no theory, but
lots of gadgets); and other conferencs
on special subjects, held all the time
all over. Lists of conferences and
their whereabouts are in most of the
magazines; Communications of the ACM
and Computer Design have the biggest
lists.

.)
CONFERENCE PROCEEDINGS . (‘.‘;fg*c‘;, c"&% AC 65,
* proc . wée "'3.')
As you may know, conferences largely con-
sist of separate "sessions" in which different people
talk on specific topics, usually reading out loud from
their notes and showing slides.

Conference proceedings are books which
result from conferences. Supposedly they contain
what each guy said; in practice people say one thing
and publish another, more formal than the actual
presentation.

This leads to a curious phenomenon at the
main computer conferences (SJCC,FJCC, ACM and
now NCC). When you register they give you a book
(you're actually paying perhaps $15 for it), contain-
ing all the papers that are about to be given, nicely
tricked out by their authors. If you rush to a corner
and look at the book it may change your notion of
which sessions to go to.

Anyway, the resulting volumes of conference
proceedings are a treasure trove of interesting papers
on an immense variety of computerish and not-so-
computerish subjects. Great for browsing.

Expensive but wonderful. (Horrible when you're
moving, though, as they are big and heavy.)

JOINT PROCEEDINGS. Proceedings for the
Spring Joint and Fall Joint, from the
fifties to 1972, are available from AFIPS
Press, as are proceedings of the 1973
NCC. (AFIPS Press, 210 Summit Avenue,
Montvale NJ 07645.) They cost $20-26
each after the conference is over; less
in microfilm. (At the Joint Conferences,
AFIPS Press often gives discounts, at
their booth, on back Joint proceedings.)

If you want to spend money to
learn about the field, Proceedings of
the Joint Conferences are a fine buy.

Back ACM Proceedings. From the ACM.

Other Proceedings. Often sold at counters at
conferences. Or available from various
publishers. Join the ACM and you'll
find out soon enough.

TRY TO GET TO THE NATIONAL JOINT. Just as
every Muslim should go to Mecca, every
computer fan should go to a National Joint
(National Computer Conference, or NCC).
The next two are (check the magazines):

May 1974, Chicago
May 1975 ~SenEraneisea_ ANAHEIM,

NO QUALIFICATIONS ARE NEEDED. Think of it
as acircus for smart alecks, or, if you
prefer, a Deep Educational Experience.

WHKT HAPPENS 1F You THKE COMPUTER COUNRSES?

There is a lot of talk about "best" ways of teaching about computers, but in most places
the actual alternatives open to those who want to learn are fairly dismal.

Universities. Universities and colleges tend to teach computing with a mathematical
emphasis at the start. Indeed, most seem to require that to get into the introductory computer
course, you must have had higher math (at least calculus, sometimes matrix algebra as well).
This is preposterous, like requiring an engineering degree to drive a car. (Gradeschool kids

can learn to program with no prerequisites.)

B> It seems to be to cut down enrollment, since they're not set up to deal with all those

people who want to learn about computers.

(And why not?) Also it's a status thing; as if

this restriction somehow should keep enrollment to students with "logical minds," whatever
those are, or "mathematical sophistication," as if that were relevant.

"Computer schools," c« ity and co

cial colleges, on the other hand, tend to

prepare students only for the most humdrum business applications-- keypunching (which is
rapidly becoming obsolete), and programming in the COBOL language on IBM business systems.
This gets you no closer to the more exciting applications of computers than you were originally .

Some experimental trends are more encouraging. Some colleges, for instance, offer
"computer appreciation courses," with a wider introduction to what's available and more varied
programming intended to serve as an introduction to this wider horizon.

Highschool courses seem to be cutting through the junk and offering students access to
minicomputers with quickie languages, usually BASIC. Both Digital Equipment Corp. and
Hewlett-Packard seem to be making inroads here.

Kiddie setups, rumored to exist in Boston and San Francisco, are geared to letting
grade-school children see and play with computers. Also one company (General Turtle, see
p.57) is selling computer toys intended to encourage actual programming by children.

- (YBERRWD

A number of people have gotten mad at me
for coining the term "cybercrud," which I define
as "putting things over on people using computers."
But as long as it goes on we'll need the word. At
every corner of our society, people are issuing
p ts and making other people do things
and saying it's because of the computer. The
function of cybercrud is thus to confuse, intimi-
date or pressure. We have all got to get wise to
this if it is going to be curtailed.

Cybercrud takes numerous forms. All of
them, however, share the patina of "science" that
computers have for the layman.

la) COMPUTER AS MAGIC WORD

The most delicate, and ingly i s
technique is the practice of naming things so as
spuriously to suggest that they involve computers.
Thus there is a manufacturer of pot-pipes with
"Data" in its name, and apparently a pornography
house with a "Cyber-".

1b) COMPUTER AS MAGIC INGREDIENT

The above seems silly, but it is no less silly
than talking about "comp predictions" and
"computer studies" of things. The mere fact that
a computer is involved in something has no bearing
on its character or validity. The way things are
done with computers affects their character and
validity, just like the way things are done without
computers. (Indeed, merely using a computer
often has no bearing on the way things are done.)

This same technique is easily magnified to
suggest, not merely that something involves
computers, but is wholly done by computers. The
word "computerize" performs this fatal function.
When used specifically, as in computerize the
billing operation, it can be fairly clear; but make
it vague, as in computerize the office, and it can
mean anything.

"Fully computerize" is worse. Thus we hear
about a "fully computerized" print shop, which
turns out to be one whose computers do the type-
setting; but they could also run the presses, pay
the bills and work the coffee machine. For prac-
tical purposes, there is no such thing as "fully"
computerized. There is always one more thing
computers could do.

BY THE AID OF THE MIRROR SHE PUT ON THE HEAD

2) WHITE LIES: THE COMPUTER MADE ME DO IT

Next come all the leetle white lies about how
such-and-such is the computer's fault and not
your decision. Thus the p is made a
General Scapegoat at the same time it's covering up
for what somebody wants to do anyway.

"It has to be this way."

"There's nothing we can do; this is all
handled by computer."

"The computer will not allow this."

"The computer won't let us."

The translation is, of course, THE STINKY LOUSY
PROGRAM DOES NOT PERMIT IT. Which means in
turn: WE DO NOT CHOOSE TO PROVIDE, IN OUR
PROGRAMS AND EQUIPMENT, ANY ALTERNATIVES.

Now, it is often the case that good and
sufficient reason exists for the way things are done.
But it is also often the case that companies and the
public are inconvenienced, or worse, by decisions
the computer people make and then hide with their
claim of technical necessity. (See p.Y(: Dealing
with computer people.)

3) YAGOTTAS: COMPUTER AS COERCER

More aggressively, cybercrud is a technique
for making people do what you want. "The com-
puter requires it," you say, and so people can be
made to hand over personal information, secretaries
can be intimidated into scouring the files, payment
schedules can be artificially enforced.

THE GENERAL STATUS TRICK

Status tricks, combining the putdown and
the self-boost, date back to times immemorial.
But today they take new forms. The biggest trick
is to elevate yourself and demean the listener at
the same time, or, more generally, the technique
is making people feel stupid while acting like a
big ch . Thus might say,

"People must begin to get used to the objec-
tive scientific ways of doing things
that p 'S now make ry."

But the translation seems to be:

"People must get used to the inflexible,
badly thought out, inconvenient and
unkind systems that I and other
self-righteous individuals and com-
panies are inflicting on the world."

YOU DON'T ALWAYS GOTTA

The uninformed are bulldozed, and even
the informed are pressured, by the foolish myths
of the clever, implacable and scientific computer
to which they must adapt. People are told they
have to "relate to the computer.” But actually
they are being made to relate to systems humans
have designed around it, in much the same way
a sword dance is designed around the sword.

When establishment computer people say
that the computer requires you to be systematic,
they generally mean you have to learn their system.
But anyone who tells you a method "has to be
changed for the computer" is usually fibbing.

He prefers to change the method for the computer.
The reasons may be bad or good. Often the
computer salesman or indoctrinator will present
as "scientific" techniques which were doped out
or whomped up by a couple of guys in the back
room.

Here is an example, as told to me. A friend
of mine worked in a dress factory where they had

a perfectly good system for billing and bookkeeping.

Customers were listed by name and kept in alpha-
betical order. The fast pace of the garment indus-
try meant that companies often changed names, and
so various companies had a number of different
names in the file. This bothered nobody because
the people understood the system.

Then management bought a small computer,
never mind what brand, and hired a couple of guys
to come in and put the bookkeeping system on it.

Still okay. Indeed, small programming firms
can sometimes do this sort of thing very well,
because they can work flexibly with the people
and don't necessarily feel committed to making it
work a certain way.

Well, this was a nice instance where the
existing system could have been exactly trans-
ferred to the computer. The fact that some custom-
ers had several names would certainly have been
no problem; a program could have been written
that allowed users to type any acceptable customer
name, causing the computer to look up the correct
,account (and if desired, print its usual name and
ask for verification). .

But no. The guys did not answer employees'
questions comprehensibly, nor did they want sug-
gestions. They immediately decreed that since
computers only worked with numbers (a fib, but
a convenience to them), every customer would
thenceforth have to be referred to by number.

After that the firm had nothing but trouble,
through confusion over the multiple names, and
my friend predicted that this would destroy the
company. I haven't heard the outcome.

This story is not necessarily very inter-
esting; it merely happened. It's not a made-up
example.

Moral: until we overthrow the myth that
people always have to adapt to computers, rather
than the other way around, things will never go
right. Adaptations should take place on both
sides, darn it.

EVERYBODY DOES IT

Cybercrud is by no means the province of
computer people alone. Business manipulators
and bureaucrats have quickly learned the tricks.
Companies do it to the public. The press, indeed,
contributes (see Suggestions for Writers and
Spokesmen, p.47). But the computer people are
best at it because they have more technicalities
to shuffle around magically; they can put anybody
down.

Now, computer people do deserve respect.
So many things that people do with computers are
hard. It can be understood that they want to be
appreciated, and if not for the particulars, for
the machismo (machinismo?) of coping with intri-
cacy. But that is no excuse for keeping others in
controlled ignorance. No man has a right to be
proud that he is preserving and manipulating
the ignorance of others.

"If it can't be done in COBOL,

Fequire,
353

I just tell people it can't be done by computer.
It saves a lot of trouble."

Attributed to somebody in Rochester.
(See COBOL, p.5| .)

In the movie "Fail-Safe," they showed you
lots of fake tape drives with the reels constantly
turning in one direction. This they called a
"computer." Calling any sinister box "a computer"
is a widespread trick. Gives people the willies.
Keeps 'em in line.

A7
N —

Ry e

Dear Depositcr:

Yo i

roux:‘ baflk 1S now util;
Provide You with bé

“ervice tter b

. ank

the use of altshnew computer o l:ng
slip. 7€ part depogis oS

i . Please gt
immeqj b art usj

. dlatnly_ We reco Ng them
ATLY a fow of mmend ¢

in
the cover of t slipg

your checkbook .

1f there ar
this now or
cfficers wi

e any quest
Ocedire,
11 be qla

ions abor ¢
My one of oy
d to help 3 ou

You can buy little boxes with blinking

lights that do nothing else but blink. They

really put people uptight. "Are you recording

what I say?" people ask. "Is it a computer?"
They'll believe such a box is anything you tell them.

RERSONS FORCTBEICRSD (4Ll BAY)

1) to manipulate situations.

2) to control others.

3) to fool.

4) to look like hot stuff.

5) to keep outsiders from seeing through something.
6) to sell something.

7) to put someone down.

8) to conceal.

9) general secretiveness.

10) low expectation of others' mentality.

11) seeking to be the broker and middleman for

12) vag ds pr

all relations with the computer.

13) you don't have to show what you're not sure of.
14) your public image is monolithic.
15) you really don't know.

BeyUriFuL BukNY Boomes

Cybercrud is not aimed only at laymen.
It can work even among insiders.

The operations manager of a national
time-sharing service, for example, was fanatical
about cleanliness. In order to assure a Clean
Computer Room, he said, and hence no dangerous
dust near the tapes or disks, he made a rule
requiring that anyone entering the computer room
had to wear cloth booties over his shoes.

Booties were hung outside for those who
had to enter.

"And I had the greatest time making his,"
says his wife, laughing. "With the cutest little
bunny faces on them. The buttons were the
hardest part to get-- you know, the ones with
eyes that roll!" She laughs very hard as she
tells this.

"Of course there was no need for it," he
now chortles, "but it sure kept people out of the
computer room."

(That's applied logic for you.)
ﬂ—’__/m

" COMPUTERS
AND THEIR PRIESTS

" First get it through your head that computers are big,
expensive, fast, dumb adding-machine-typewriters. Then
realize that most of the computer technicians that you're
likely to meet or hire are complicators, not simplifiers.
They're trying to make it look tough. Not easy. They're
building a mystique, a priesthood, their own mumbo-
jumbo ritual to keep you from knowing what they-- and
you-- are doing."

-- Robert Townsend,
Up The Organization (Knopf), p. 36.

y—

THE CARGO~(ULT ASPECT

Outsiders are often prey to cybercrud they
dream up themselves. I once knew a college
registrar's office where they had been getting
along fine for years with paper forms. The year
before the computer was slated to arrive, they
started using file cards filled out by hand, instead.
Why? "Well, we thought that would make it easier
for the coi'nputer. Computers use cards, don't they?"

Note that referring to a computer as if it were
a living creature is not cybercrud; to say that a
program "looks at" a device, "tries to" effect a
procedure, and "goes to sleep," are all colorful
brief ways of describing what really happens.
(See Guidelines for Writers and Spokesmen, p.\{7)

MY [ECRET POVERS
WEsTHS Ay possesy ?

, '?\\‘\, m*

v EL
\' M4sko

Cybercrud is, of course, just one branch of
THE GREAT GAME OF
TECHNOLOGICAL PRETENSE
that has the whole world in its grasp.

”l/aq/ womas, chifd —
g? 815 yp agunst fhe kbl
1) Sienek."
Fresy Tleer

e MYT# oF Te MACHINE:

A DEEP AULTURAL ENGRAM

Public thinking about computers is heavily
tinged by a peculiar image which we may call the
Myth of the Machine. It goes as follows: there is
something called the Machine, which is Taking Over
The World. According to this point of view
The Machine is a relentless, peremptory, repetitive,
invariable, monotonous, inexorable, implacable,
ruthless, inhuman, dehumanizing, impersonal
Juggernaut, brainlessly carrying out repetitive
(and often violent) actions. Symbolic of this
is of course Charlie Chaplin, dodging the relent-
less, repetitive, monotonous, implacable,
dehumanizing gears of a machine he must deal with
in the film Modern Times.

Ordinarily this view of The Machine is
contrasted with an idea of a Warm Human Being,
usually an idealized version of the person thinking
these thoughts.

The Warm
Machine$S™——= Human
Being

But consider something. The model often
goes further than this. The Machine is cold, the
Human Being emotional and warm. Yet there is
such a thing as being too emotional and warm.
There is in fact a third type in the schema, the
being who goes too far on the same scale. Strangely,
he has at least three different names, though the
picture of him is abstractly the same:

- e . o
> ~ =
P U
N

The Warm "Bum"
Machine Human "Nigger"
Being "Hippie"

Now, "bums," "niggers" and "hippies" are
not real people. The words are derogatory slang
for the destitute, for persons with any African
ancestry, and for people dressing in certain styles.
But the remarkable thing about the slang is that
all three of these derogatory terms seem to have
the same connotation in our culture: someone who
is dirty, lazy and lascivious. In other words,
whatever distinguishes The Machine from the
Warm Human Being is carried too far by the bunch
at the other end.

In other words, this conceptual continuum
is a single, fundamental scale in our culture;
why is unclear. Since most people consider
themselves-- naturally!-- to be in the middle
category, it acts as a sort of reference continuum
of two bad things on either side.

It also has another effect: it supplies a
derogatory way of seeing. On the right-hand side,
it allows many Americans not to see, or to see
only with disgust, the destitute and those with
African ancestry and those dressing in hippie style.
But this book isn't about that.

The left side of the continuum is our present
concern. There, too, people refuse to see. What
people mainly refuse to see is that machines in
general aren't like that, relentless, repetitive,
monotonous, implacable, dehumanizing. Oh, there
are some machines like that, particularly the
automobile assembly line. But the assembly line
was designed the way it is because it gets the most
work out of people. It gets the work it does out of
people by the way it exerts pressure.

So here we see the same old trick: people
building a system and saying it has to work that way
because it's a machine, rather than because that's
how I designed it.

To make the point clearer, let's consider
some other machines.)

The automobile is a machine, but it is hardly
the repetitive, "dehumanized" thing we usually
hear about. It goes uphill, downhill, left and right,
fast and slow. It may be decorated. It is the scene
of many warm human activities. And most impor-
tantly, automobiles are very much the extension of
their owners, exemplifying life-style, personality,
and ideology. Consider the Baja Buggy Volkswagen
and the ostentatious cushy Cadillac. Consider the
dashboard ornament and the bumper sticker.

The Machine, indeed.

The camera is a machine, but one that allows
its user to freeze and preserve the views and images
of the world he wants.

The bicycle is a machine, but one that brings
you into personal and non-polluting contact with
nature, or at least that stylized kind of nature
accessible to bicycle paths.

To sum up, then. The Machine is a myth.
The bad things in our society are the
products of bad systems, bad decisions
and conceivably bad people, in various
combinations. Machines per se are
essentially neutral, though some machines
can be built which are bad indeed,
such as bombs, guns and death-camps.

The myth of The Machine is a curious aspect
of our ideology. Is it especially
American. or world-wide?

If we ignore this myth we can see each possible
machine or system for what it is, and
study how it ties in with human life
for good or ill, fostering or lousing up
such things as the good life, preser-
vation of species, love and self-respect.

THE MYTH
ANY THE RRORSCHACY

"The computer is the ultimate Rorschach
test," Freed Bales said to me twelve years ago.
Dr. Bales, a Harvard psychologist, was somew hat
perturbed by the papers he was getting in his
seminar on computer modelling in the social
sciences. Somewhat nutty people in the seminar
were writing somewhat nutty papers for him.

And truer words were never spoken. On
this point I find Bales has been terribly, terribly
right. The computer is an incredible projective
test: what you see in the computer comes right off
the back wall of your psyche. In over a decade
in the field I have not ceased to marvel at the way
people's personalities entwine with the computer,
each making it his own-- or rejecting it-- in his
own, often unique and peculiar way, deeply re-
flecting his concerns and what is in his heart.
Yes, odd people are attracted to the computer,
and the bonds that hold them are not those of
casual interest.

In fact, people tend to identify with it.

In this light we may consider the often-
heard remarks about computers being rigid,
narrow, and inflexible. This is of course true in
a sense, but the fact that some people stress it
over and over is an important clue to something
about them. My own impression is that the people
who stress this aspect are the comparatively rigid,
narrow and inflexible people.

Other computer experts, no less worthy,
tell us the computer is a supertoy, the grandest
play machine ever to be discovered. These
people tend to be the more outgoing, generous
and playful types.

In a classic study, psychiatrist Bruno
Bettelheim examined a child who thought he was
a machine, who talked in staccato monosyllables,
walked jerkily and decorated the side of his bed
with gears. We will not discuss here the prob-
able origins and cure of this complex; but we
must consider that identifying with machines is
a crucial cultural theme in American society,
an available theme for all of us. And it well may
be that computer people are partaking of this same
self-image: in a more benign form, perhaps, a
shift of gears (as it were) from Bettelheim's
mechanical child, but still on the same track.

Some of the computer high-chool kids I've
known, because of their youth, have been even
more up-front about this than adults.

I know one boy, for instance, whose dream
was to put a 33ASR Teletype on wheels under
radio control, and alarm people at the computer
conference by having it roll up to them and clatter
out questions impersonally. (f you knew the kid
-- aloof and haughty-seeming-- you might think
that's how he approaches people in real life.)

I know a high-school boy (not a computer
expert) who programmed a computer to type out
a love story, using the BASIC "print" command,
the only one he knew. He could not bring
himself to write the love story on paper.

The best example I can think of, though,
took place at the kids' booth (see p.‘f']) ata
computer conference. One of the more withdrawn
girls was sitting at an off-line video terminal,
idly typing things onto the screen. When she
had gone a sentence remained. It said:

I love you all, but at a distance.

—

(On the other side of this book, Dream
Machines, we will carry this matter further.
The most exciting things in the computer field
are coming from people trying to realize their
wildest dreams by computer: artificial intel-
ligence, comp music, puter picture-
making and so on.)

HE POWER_ KN THE GLORY

Forget what you've ever heard or imagined
about computers. Just consider this:

The computer is the most general machine
man has ever developed. Indeed, it should be
called the All-Purpose Machine, but isn't, for
reasons of historical accident (see nearby).
Computers can control, and receive information
from, virtually any other machine. The computer
is not like a bomb or a gun, which can only des-
troy , but more like a typewriter, wholly non-
committal between good and bad in its nature.
The scope of what computers can do is breath-
taking. Illustrated are some examples (although
having all this happen on one computer would be
unusual). It can turn things on and off, ring
bells, put out fires, type out on printing machines.

Computers are incredibly dogged. Computers
can do things repeatedly forever, or an exact,
immense number of times (like 4,901,223), doing
something over and over, depending on whether
it's finished or not. A computer's activities
can be combined in remarkable ways. One activity,
repeated over and over, can be part of another
activity repeated over and over, which can be
a part of still another activity , which can be
repeated ad infinitum. THERE ARE DEFINITE
LIMITATIONS on what computers can do, but
they are not easy to describe briefly. Also, some
of them are argued about among computer people.

It eaw wake

fiaum oh & Savees,

I can even allow v
wawipolafe prefores on'a sereen.

Typina in on Screans
1?11\4 b-xvllt.

gelling back answevs
poatvy 1&;1» was ghore)
on dne ik, ov whoteven

h’i\"n:s ot shuff

A HELPFUL COMPARISON

Lwlsru ker

)

mpiter
(r.v;"'\h) wtic)

Storage o disk
S

It helps sometimes to compare computers with typewriters.
Both handle information according to somebody's own viewpoint.

Nervous Question

Helpful Parallel

doM?\)\t‘u‘

©pOOOOOO
oOOoDOOD

5 L W I

xfer;b(o~ ‘\,\rq

"Can a Computer
Write a Poem?"

"Can't Computers Only

Behave Mechanistically?"

"Aren't Computers
Completely Impersonal?"

"Can a Typewriter
Write a Poem?"
(Sure. Your poem.)
"Can't Typewriters Only
Behave Mechanistically?"
(Yes, but carrying
out your intent.)
"Aren't Typewriters
Completely Impersonal?"
(Well, it's not like handwriting,
but it's still what you say.)

THE AUL- PURPOSE NACHINE

Computers are COMPLETELY GENERAL,
with no fixed purpose or style of operation.
In spite of this, the strange myth has evolved
that computers are somehow "mathematical."

Actually von Neumann, who got the general
idea about as soon as anybody (1940s), called
the computer

THE ALL-PURPOSE MACHINE.

(Indeed, the first backer of computers after World
War II was a maker of multi-lightbulb signs. It

is an interesting possibility that if he had not

been killed in an airplane crash, computers

would have been seen first as text-handling and
picture-making machines, and only later developed
for mathematics and business.)

We would call it the All-Purpose Machine
here, except that for historical reasons it has
been slapped with the other name.

But that doesn't mean it has a fixed way
of operating. On the contrary.

COMPUTERS HAVE NO NATURE
AND NO CHARACTER,

save that which has been put into them by whoever
is creating the program for a particular purpose.
Computers are, unlike any other piece of equipment,
perfectly BLANK. And that is how we have projected
on it so many different faces.

orpil Bt

Many ordinary people find computers
intuitively obvious and understandable;
only the complications elude them. Perhaps
these intuitively helpful definitions may help
your intuition as well.

1. Think of the computer as a
WIND-UP CROSSWORD PUZZLE.

2. A COMPUTER IS A DEVICE FOR
TWIDDLING INFORMATION. (So, what kinds
of information are there? And what are the
twiddling options? These matters are what
the computer field consists of.)

3. A computer is a completely general
device, whose method of operation may be

changed, for handling symbols in any
specific way.

e DEEP DARK. SECRET

meine 2.
THE PROGRAW
BRANCY

PRNCINLE 3
ALL DeViegs
LooK ALIKE.

Com~
P~

THE MAGIC OF THE COMPUTER PROGRAM

The basic, central magical interior device
of the computer we shall call a am follower.
A program follower is an electronic device (usually)
which reads symbols specifying operations, carries
out the step each specifies and goes on to the next.

The program follower reads down the list
of instructions in the program, taking each instruction
in turn and carrying it out before it goes on to
the next.

Now, there are program followers that just

do that and nothing more; they have to stop when
they get to the end of the list of instructions.

i

A true computer, however, can do several
things more.

1t can jump back to an earlier point
in the program and go on from there. Repeating
the program in this fashion is called a loop.

It can perform tests on symbols in
the memory-- for instance, to see if a loop
has been done enough times, or if some other
part of the job has been finished-- and jump
to some other program depending on these
symbols. This is called a branch.

Finally, the computer can change
the information stored in memory . For instance,
it can place an answer in a specific part
of memory .

WHAT, THEN, IS A (Digital) COMPUTER?

A device holding stored symbols
in a changeable memory,
performing operations on some of those symbols
in the memory,
in a sequence specified by other symbols
in the memory,
able to change the sequence
based on tests of symbols in the memory,
and able to change symbols in the y.
(For example, do arithmetic and
store the result in the memory.)

Rather than try to slip it to you or prove
it in some fancy way, let's just state baldly: the
power of such a machine to do almost anything
surpasses all previous techni 1 tricks in h
history .

HOW CAN A COMPUTER CONTROL
SO MANY DIFFERENT THINGS?

Answer. Different as they may seem, all
devices are controlled in the same way. Every
device has an interface, that is, its own special
connection setup, and in this interface are the
device registers.

These device registers look the same to the
p : the p program simply moves
information patterns into them or moves information
patterns from them to see what they contain.

INTERFACE

| ——> particular symbolic signals

device reguffere the device needs

CoMPOTER

The computer, being a machine, doesn't
know or care that device register 17 (say) controls
a hog feeder, or device register 23 (say) receives
information from smog detectors. But what you
choose, in your program, to put into device register
17, controls what the hogs eat, and what comes
into device register 23 will tell your program,
you hope, about smog conditions. Choosing how
to handle these things in your program is your
business.

_ 4oV mewory
7
rrasgdn ™
PROGRA
FoLLOWER — Lo
». VD S
P
ey] it
"Hhat s an 1‘\M¢¢¢?"
aske) hm7 machine,
" Whateser Torns Yoo ©n, "
Iuo\ .T; 43‘_
heart patient
oil refinery
m’usical instrument
dis;(memory

11

HOW DOES THE LOOP WORK?

The computer does things over and over
by changing a stored count, then testing the stored
count against another number which is what the
count should get to, and going to the beginning
if the desired count has not been reached. This
is called a loop. (If there's no way it can ever
get out, that's an endless loop.) (Actually, the
program loop is done the same way as a program
branch: IF a certain count has not been reached,
it branches BACK to the start of the loop.)

Other things besides programs may be stored
in the memory. Anything besides programs are
usually called data.

The inctructions of programs use the data in different
ways. Some programs use a lot of data, some use

a little, some don't use any. It is one of the fascinating
and powerful things about the computer that both

the instructions of a program, and the data they work
on, are stored as patterns of bits in the same memory,
where they can be modified as needed. Indeed, the
program can modify its own patterns of bits, a very
important feature.

WHAT DO PROGRAMS LOOK LIKE?

In what forms are these programs stored,
you ask? Well, they are written by people in computer
languages, which are then stored in some form in
the computer's fast core memory, where the program
follower can act on them. But what does a computer .
language look like, you ask? Aha...

o Yo PAGE 1b

(If you want to see what the bottom-most level looks
like, with all the bits and things, skip ahead to p.X)

WHATEVER IT MAY DO IN THE REAL WORLD,
to the computer program
it's just another device.

ANALOG COMPUTERS DISPOSED OF

There are two kinds of computers: analog
and digital. (Also hybrid, meaning a combination.)
Analog computers are so unimportant compared to
digital computers that we will polish them off in
a couple of paragraphs.

"Analog" is a shortened form of the word
"anelogy." Originally an "analog" computer was
one that represented something in the real world
by some other sort of physical enactment-- for
instance, building a model of an economic system
with tubes and liquids; this can demonstrate

Keynesi P iples remarkably well.

However, the term "analog" has come to mean
almost exclusively pertaining to measurable
electrical signals, and an "analog computer" is
a device that creates or modifies measurable
electric signals. Thus a hi-fi amplifier is an
analog computer (it multiplies the signal), a music
synthesi is an log P (it generates
and reshapes analog signals). Thus the term has
deteriorated: almost anything with wires is an
analog computer.

Analog computers cannot be truly programmed,
only rewired.

Analog equipment is useful, important and
indispensable. But it is simply not in the same
class with digital computers, henceforth called
"computers" in this book, which manipulate symbols
on the basis of changeable symbolic programs.

"Analog computer" also means any way of
calculating that involves measuring approximate
readings, like a slide rule.

LET'S CALL & SMDE ASPEHE

It's awfully easy to fool people with
simple words, let alone buffalo them with weird
tethnical-sounding gab. The thing about tech
talk is that it can really be applied to any area.
The trick lies in the arrangement of boxcar
adjective nouns, and in the vague use of windy
terms that have th in some
technical area-- say, the space program.

Just consider. We might call a common
or garden spade--

A PERSONALIZED EARTH-MOVING
EQUIPMENT MODULE

A MINERALOGICAL MINI-TRANSPORT

A PERSONALIZED STRATEGIC TELLURIAN
COMMAND AND CONTROL MODULE

AN AIR-TO-GROUND INTERFACE
CONTOUR ADJUSTMENT PROBE

A LEVERAGED TACTILE-FEEDBACK

CoMputers dErnC)
JUST LIKE CAMTRAS M) CARS
Just the way > can , viz.:

“A camera is a device you point at something
to willfully capture its appearance."

Just the way everyone can understand cars, viz.:
"A car is a device people get inside which
then goes somewhere else, under the willful
control of the driver."

Well, how about
“A computer is a device which manipulates
and 1 » accor-

ding to a plan willfully prepared by a planner."

INGPICTION
MISCELLAN

FICTIONS ABOUT WHAT COMPUTERS DO

Many people suppose there is nothing
computers cannot do (see g. 45); some peo-
ple, indeed, think there is nothing com-
puters do not already do.

A couple of years ago, a leading
picture magazine carried a piece a-
bout Stanford's Artificial Intelli-
gence Laboratory, claiming that one
""Shakey the Robot" had been developed
to near-human intelligence and capa-
bilities. This was pure bosh, since
repudiated in the computer magazines,
but a lot of people Out There in
Readerland believed it. (See "The
God-Builders," flip side.)

Once I had a long discussion with
a somewhat wild-eyed young woman who
believed that the government was moni-
toring her brain with computers. I
think I persuaded her that even if
this were feasible it would cost the

government tens of thousands of dollars
to do it, and that probably no existing

government agency was that interested
in her thoughts. I'm not sure she was
persuaded.

GEOMASS DELIVERY SYSTEM

A MAN-MACHINE ENERGY-TO-STRUCTURE
CONVERTER

A ONE-TO-ONE INDIVIDUALIZED
GEOPHYSICAL RESTRUCTURIZER

A PORTABLE UNITIZED EARTHWORK
SYNTHESIS SYSTEM

AN ENTRENCHING TOOL (Firesign Theater)
A ZERO-8UM DIRT LEVEL ADJUSTER
A FEEDBACK-ORIENTED CONTOUR
MANAGEMENT PROBE AND
DIGGING SYSTEM
A GRADIENT DISEQUILIBRATOR

A MASS DISTRIBUTION NEGENTROPRIZER

DT SYSEH

AN EXTRA TERRESTRIAL
TRANSPORT MECHANISM.

Spades, not words, should be used for
shovelling. But words should help us unearth
the truth.

In the computer field, the same things are
often called by different names (for instance,
the IBM 1800, a fairly ordinary minicomputer,
is called by them the "IBM 1800 Data Acquisition
and Control System"), different things are often
called by the same names, and things can be
inside-out and upside-down versions of each
other in 'y variety. (Indeed, compu-
ter people may find this book inside-out, which
is okay with me. Life is a Klein bottle.)

Sorting things out, then, means having a
few basic concepts clear in your mind, and
knowing when you see examples and variations
of them.

Computer people often say that to understand
computers you have to have a "logical mind."

There's no such thing. But saying such things
intimidates many, especially those who have

change programs,
change disks and tapes,

Comevren_ ofeRATOR

UTER PEOTE
Soue e

Computer operators turn 'em on and off,

select modes of operations for programs

that can do more than one thing.

(See p. 38.)

Input typists (also called
keypunch operators)

are clerks who copy information
into the computer (on terminals)
or onto something the computer can read
(punch cards, magnetic disk, etc.)

NOTE: these jobs may end in a few years

when nothing else has to be copied anymore
because users put things in themselves.

i
einerr

or in the ‘gears.

S

Computer repairmen, or "field engineers,"
fix computers and their accessories
when something goes wrong electrically

)
[OFS

Computer programmers
create exact plans
for what the computer
is to do,

then change them
till they work.

KRPPUNCH oreRATR

They always wear tie clips,
at least if they wear ties,
80 as not to get pulled into

rotating machinery.

A NAIVE USER (no offense)
is an ordinary person

{jl/% Nawe vse
~
S

7,
who doesn't need to know any of these things @
in order to do something useful with the computer.

Creating programs to help him 1s the frontier

of computing.

been told they do not have "logical minde."”

What is meant, actually, is indeed important:
in working with computers you must often work
out the exact ramificatione of epecific combi-
nations of things, without skipping steps.

But the other mode of thinking, the intuitive,
has its place in the computer field too.

Whichever your habitual style of mind, computers
offer you food-- and utensils-- for thought.

HORRIBLE MISUNDERSTANDINGS

Some people think of computers as things
that y digest and assimil
all knowledge. "Just feed it to the computer,” is
the motto. But what you feed into the computer
just sits there unless there's a program.

"How would you do that by computer?"” is
a question people often ask. The question should

WHAT YOU'VE SEEN PROBABLY WASN'T

"A COMPUTER."

Get out of your head the notion that some

one system you've seen showed you what

Computers Are Really Like. Computer systems

THE AUTOMOBILE ANALOGY (more)

cleared up till we got to the tollbooth.
Then Harry got lost on the interchange,
and we had to double back on the service

can be as different externally as bats and whales.| T03d."

(Yet it's the same kind of heartbeat, but that's
no help in dealing with them.)

Then what is it computer people know,
you may ask, that leads them to understand

new systems quickly? Aha. Computer people
simply adjust faster to whole new worlds.

AN
)

&2

How incomprehensible to someone from
1905. Yet how simple-minded when you un-
derstand it. That's how it is with com-

puters. -

Computer talk sounds so strange and
incomprehensible to you folks out there--
yet to us in here it's often as simple as
the lines above-- if you know the funda-
mental concepts.

And nothing in the normal everyday
world will have prepared you for them.

It's not jargon, but the simplest
way to express thoughts in these areas.

"The Interstate was bumper-to-bumper,
but after we had lunch at the rest stop it

be, "how would you do that at all?" If there is

a method for doing something which can be broken
down into simple steps, and requires no human
judgment, then maybe we can take those steps
and program them on a computer. But maybe we
can also think of a simpler way to get them done.

Then there is the idea that a computer is
something you ask questions. This assumes, I
guess, the earlier premise, that the computer
has already digested and assimilated a lot of
stuff and can sling it back at you in new arrange-
ments.

USING A COMPUTER
SHOULD ALWAYS BE EASIER
THAN NOT USING A COMPUTER.

If it isn't, you
(or your company, or your state)
may have been s0ld a bill of goods.
OR they may have decided

your is less imp:

than something else.

In any case, you have a right to ask
sharp questions.

WHAT IS THIS SYSTEM ABOUT?
Handy questions to size up
what a computer is supposed to
be doing.
What data does it contain?
Where is the data stored?

What other data will it
link up to?

Actually what must happen, to get
"questions” answered, is this: there must be
some program that puts input material into a

data (See "Data Str .") Then
you need programs that will count and trace,
or » data in ways

you desire. Then you need a way to start these
tracing-and-searching programs going through
the data structure in ways you want. So you

need a prog; pting input from a keyb N
or » and starting the other prog
in operstion. ..

THE DAMNED LIE
"Computers are rigid and inhuman."

A BETTER APPROXIMATION

People are sometimes (all {oo often)
Tigid and inhuman. (Machines and
animals are nonhuman-- the term "in-

human" applies only to people.)

“Rigid and inhuman" computer systems
are the creation of rigid and inhuman

people.

What information
do you suppose
can reasonably
be derived from that?

What are the key
input and output devices?

In what forms
does information
go in and out?

‘What do you suppose
they might want to know?

e NEW FRA

A new era in computers is dawning.

The first, or Classic, computer era
used straightforward equipment and work-
ed on straightforward problems.

cuear-gor
I\ % ey

CUSIE COMPUTER_
Gex ".%-’)

The second, or Baroque, computer
era used intricate equipment for hard-
to-understand purposes, tied together
with the greatest difficulty by com-
puter professionals who couldn't or
wouldn't explain very well what they
were doing.

BAROGRUE
SYSTEMS

WITH
R

& Mimgs e
(Sics, gome,

“I
OS5 /MVT,
Téan ../.)

But a change is coming. No one com-
pany or faction is bringing it about, al-
though some may feel it is not in their
interest. I would like to call it here
the DIAPHANOUS age of the computer.

By "diaphanous" I refer both to the
transparent, understandable character of
the systems to come, and to the likeli-
hood that computers will be showing us
everything (dia-, across everything,
phainein, to show). (frlser i sec ﬂ.‘,,.k)

In the first place, COMPUTERS WILL
DISAPPEAR CONCEPTUALLY, will become
""transparent", in the sense of being
parts of understandable wholes. More-
over, the '""parts" of a computer system
will have CLEAR CONCEPTUAL MEANING.

In other words, COMPUTER SYSTEMS WILL
BE UNDERSTANDABLE. Instead of things
being complicated, they will become
simple.

Now, many people think computers are by
their nature incomprehensible and complicated--
unfortunately, that's because they have been
MADE TO BE. Usually this is unintentional,
but I fear not always. EXAMPLE. Instead of
being told, "this is the mysterious XYZ comput-
er, it has to have things just so, you have to
fill out these RMQ forms to go into the V34...",
you will hear such surprisingly simple things
as "This system is set up for keeping track of
who owes what to the company. On the screen
you can get lists of accounts and outstanding
bills and who owes them; if you point at one
with the light pen, the printing machine over
here will print a bill all set to go in the
envelope.”

In other words, systems will increasingly
have UNDERSTANDABLE PARTS WITH UNDERSTANDABLE

INTERCONNECTIONS .*
»
A SCRCen
Rersoany

(1114 3

Boxes hert vepresed]

UNS
vl ol b
ehsevrile,

RECORD
SToRAGE.

SV H

el

al

What is responsible for this remarkable
change?

For one thing, smaller and smaller com-
panies are buying computer services, and they
won't stand for ridiculous complications.

For another thing, a number of people in the
computer field have gotten sick of systems
that make things hard for people. Finally,
the price of computers, especially micro-
processors (see p.) are coming down so
fast that they can be tailored to fit people,
rather than vice versa. But most of all,
it's jus Yifme, that's all.

19

BIBLIOGRAPHY

C.L. Freitas, "Making the Best Buy for the
Small Business." Computer Decisions
March 73, 22-26. —_—

Compares the relative costs of
minicomputers and time-sharing; concludes
that minis are the best buy.

Burton L. Katz, "Making Minicomputers Work
in a Medium-sized Business.'" Data
Processing, Winter 1971, 9-117

Stresses the point that well-des-
igned computer systems can be used by
existing personnel of a firm, without
excessive complication,

Frederic G. Withington, "Cosmetic Programming."
Datamation, Mar 70, 91-95. How to make
Systems friendly on the outside.

| IWMS‘EMS

~_

Used to be that ordinary people had to
deal with computers by filling out intricate
forms, which were then translated into punch
cards. The forms put things in weird cate-

-

gories (see "Coded-Down Data," p. . .)
No longer.

Anyway, no longer necessary.

Computer systems can now give you action,
excitement-- and explanations.

This is ‘done through the magic of the
TERMINAL. Terminals come in two conspicuous
flavors (typewriter and screen or "boob tube")
d also have two less-noticeable divisions
("Teletype" or "industry" versus "IBM type.")

Anyway, a terminal is something that
allows a person and a computer to type at each
other.

Now, computers are merely gadgets for
twiddling information. They no more under-
stand English, or human psychology, than
puppies can read music. (See "Artificial In-
telligence," p.\1-15) But the computer's prog-
ram can, for instance, direct the computer to
type out a simple question, and compare the
user's answer with a simple set of alternatives.
For example, suppose the user is visiting a hos-
pital. A computer can sign him in without the
abrasiveness of a receiving nurse, and with far
more patience. The following might be a sample
dialogue. (Here the computer types what's in
caps, and the users replies are in lower-case.)

DO YOU HAVE AN ACUTE PAIN? (Y, N, DK)

YOUR ANSWER IS: DK FOR "DON'T KNOW."
DOES THAT MEAN YOU'RE NOT SURE
WHAT 'ACUTE' MEANS? (ANSWER A)
A PAIN COMES AND GOES? (ANSWER B)
YOU HAVE A PAIN SORT OF ON THE
BORDER? (ANSWER C)

c

IS THIS PAIN IN AN EXACT PLACE YOU
CAN IDENTIFY? (Y,N,DK)
y

An interactive system of this kind is call-

ed a conversational system,in that it "converses"

with the user. The secret is that the alterna-
tives in the computer program are few and care-

fully worked out beforehand: there are great pit-

falls when there are too many alternatives, as
when such conversational systems are used for

In a conversational system

Termacs

A terminal is simply
any device by which
a person and a computer
can type at each other.

Kids love terminals.
This one is a video
terminal or keyscope
(see p. DM 10§). It
allows the computer
to present textual or
numeric information,
play games with you,
quiz you for infor-
mation in a good-guy
system, or whatever
-- depending on the
program, of course.

More expensive scopes
(or computer displays)
allow pictorial ani-
mation under the user's

the computer can helpfully
‘lead the user on.

Motto 1 for the new era:
USING A COMPUTER SHOULD ALWAYS
BE EASIER TIHAN NOT USING
A COMPUTER.
Motto 2 for the new era:

THE NEW FRONTIER IN COMPUTERS IS
CONCEPTUAL SIMPLICITY AND

People who delight in intricacy are going to
have to learn some new tricks. Internal in-
tricacy is fine, as long as the user doesn't
have to deal with it.

Motto 3 for the new era (to computer
people):

MAKING THINGS EASY IS HARD.
Motto 4 for the new era:
ANY SYSTEM FOR A SPECIFIC PURPOSE
SHOULD BE TEACHABLE IN TEN
MINUTES OR LESS.
Anyone who has been taught the use of
some fixed-purpose computer system, such as
an airline reservation system, may doubt this.

But perhaps this book will clarify things
somewhat.

A "GOOD-GUY SYSTEM"
is a conversational
computer system that is
CLEAR,

EASY TO USE,

AND FRIENDLY.

ANY MAN OF COMMON SENSL CAN
DESIGN A COMPUTER SYSTLM FOR

control (discussed

throughout flip side).

THE MAIN THING TO

UND: RSTAND: what they

do ig decided by human
fuman

A PURPOSE IMPORTANT TO HIM:
the data structure, forms of
information, general opera-
tions, record-keeping, and
responses to on-line users.

teaching (see pp. DM 15-19).

Here is a straightforward example: a system
I wish I had for balancing a checkbook. Note
that the inner program for this conversational
system could be written'in any of the three lan-
guages presented later.

WHAT PROGRAM WOULD YOU LIKE TO RUN? ckbk
CHECKBOOK PROGRAM STARTS.
DO YOU WANT TO PROOF THE NEW STATEMENT FOR

MARCH? y

PLEASE LIST THE CHECKS THAT HAVE COME IN.
231, 239, 240, 242, 244, 245.

SUM OF INCOMING CHECKS IS $345.72. DO YOU
WANT BREAKDOWN? n

PRESUMABLY BANK IS CHARGING YOU .60 FOR
SIX CHECKS. ALSO MONTHLY CHARGE OF
FIFTY CENTS (PLEASE CONFIRM). y

ARE THERE ANY OTHER BANK CHARGES THIS

MONTH?

ARE THE FOLLOWING DEPOSITS ON THIS STATE-
MENT-- MARCH 1 SALARY, $854.007 vy
GIFT FROM AUNT AGATHA, 14 MARCH,

25.00? n
TOTAL ON STATEMENT SHOULD BE $1753.21.
PLEASE CONFIRM., 'y
YOUR CURRENT FLOAT IS $656.75. DO YOU WANT
BREAKDOWN?
CURRENT FLOAT AS FOLLOWS--

But for some reason this is
generally kept a secret.

Types of available
computer terminals
are digcussed in
the next spread;
more display terminals
discussed p. DM |

~~

"JOE TURKEY USER"

A good friend of mine, Jordan Young,
is a former R.E.S.I.S.T.O.R. (see p. 7))
and now a systems programmer (see p. Y¢)
on the mighty Dartmouth time-sharing sys-
tem, DTSS. (See p. 5 .)

Jordan tells me that one of the more
important people at Dartmouth is a mythical
individual named Joe Turkey User. This es-
timable personage knows hardly anything
about computers, makes a lot of mistakes,
thinks he understands what you tell him
when he doesn't, tends to hit the wrong
keys on the terminal, and in general tends
to screw up.

Below: a "bull pen”
of terminale, all
hooked up to the main
computer at the
Chicago Circle Campus,

NO. 241 IRVING'S RECORDS 7 MARCH $§ 6.75 : , pus
NO. 243 SINISTER § MALADROIT (LEGAL University of Illinois. But the motto up there is: “If it
FEES) 12 MARCH $600.00 What each person does B e p is it's
NO. 246 DOGGIE HAIRDRESSERS ’ at his terminal not simple enough for Joe Turkey User--
) 12 MARCH $ 20.00 is normally independent it's too complicated.
NO. 247 SAM GRONK (REPAYMENT) of what any other person DTSS is a good-guy system.
14 MARCH $ 30.00 does, through time- good-guy sy
TOTAL $656.75 gharing of the nain
computer. Installations .
ARE YOU DONE WITH CHECKBOOK PROGRAM? 'y mors sutied to sines
(The part shown above is easy. Thinking sharing can have large

numbers of terminals,
all over a campus, a
company or the world;
see Time-Sharing, p. 45.

out the ways for the user to correct his re-
cords, and/or the bank, is the tough part.)
YOUR FIRST COMPUTER CONTACT

When you first sit at a computer terminal,
the feeling is one of sheer terror. Sweat and
chills, jumpiness and sudden clumsy nervous
motions, lunatic absentmindedness and stammering
fear and awkwardness interfere with your ability
to function or understand the person who is
helping you.

COMPANIES THAT WILL SET UP WIIOLE
LITTLE BUSINESS SYSTEMS

A number of companies make minicomputers
(partial list on p. Y3); however, companies
who want business systems built around mini-
computers may want to investigate companies
that will put together whole business systems
for them around minis.

It's perfectly normal.

(It is hoped that one contribution of
this book will be to give the reader a better
idea of what to ask for.)

Two companies that seem to be in this
business are:

Genesis One Computer Corporation,
99 Park Ave., NY 10016. Appears
to use BASIC language (see pp.16-17).
Qantel Corp. (offices in five major cit-
ies). Sells a minicomputer of their
own manufacture, using a language
called QIC (Qantel Interactive Code),
which a salesman tells me is "just
like BASIC" (see pp. 16-17). Mini-
mum setup includes a display terminal,
printer, computer and 6-million-char-

acter disk, at $31,000. Thank you, Carson's.

TN AWRACLE OF OVER-THE ~PioNE TERMWALS
(Sone peopie g0 ope (T see Ba Q‘,MMJ::U 51 tself) .

BiG THe-5HARNG CORPUTER FAR Auid

""Modem" takes the terminal's pulse code
and warbles it into the phone as audible
tones. The computer answers with similar
warbles and tweedling; the modem converts
that back into alphabetical characters.

r?

PHONE STER
Puecny "
-
= ongintt
COVPER

Compureels
SPECIAL

RS-232 is the standard interface. Q
PHONE SCTUP

MIICONPUTER OV froncEs

000 00000000

YOU CAN HiW6- A TERMNAL
CITHER ON & MINICOMPUTER (cee p-T6)
OR t 816 OMPUTER. (see p. 7).

(What it does, of course, depends on the progranm,

THE MOST IMPORTANT COMPUTER TERMS FOR THE '70s

Here are some phrases that will count in the
new era of computing, when we will run into
more and more computer systems set up for
particular purposes.

on-line
connected to a functioning computer.
(Note that the computer may be in the
typewriter or desk itself,)
(As distinct from off-line, setting
things up for processing later.)
interactive
not just connected, but responding to
you. Interactive systems and programs
can respond to your choices and requests,
clarify what they want from you, etc.
Temote
referring to something far away, as dis-
tinct from local, right where you are.
A computer can Pe either remote or local,
e.g., on your desk.
front end (n.), front-end (adj.)
whatever stands between you and a system.
A front end can be the terminal in your
office, for example. A front-end program
is one which mediates between a user an
some other system or program, perhaps
collecting data for it by quizzing you.
dedicated
set up for only one use. A big computer
at a computing center has to have many
uses; a little computer in your office
can be dedicated. Dedicated computers
are now hidden in all sorts of things:
cash registers, for example (see "Micro-
processors,” p. 4Y4).
turnkey (adj.)
turned on with a key. Especially,
turnkey systems, small computer systems
that can just be turned on (key or not)
and are fully set up, ready to run,
programmed, etc.

I\
A\

real-time

responding to events in the world as nceded,

without delays. Computer systems that con-
trol machinery, make airline reservations,

13

predict the weather or respond to naive users

are real-time. Systems that can catch up
overnight are non-real-time.

"intelligent terminal"”
stupid term referring to any object that
does more than act like a plain terminal.
The term is stupid because it confuses
distinctions. Some "intelligent terminals"
have extra circuits for various purposes;
others contain their own minicomputers;
still others are ordinary terminals con-
nected to front-end programs.

user-oriented
set up for "users'-- people who are not
programmers or input typists, but who
actually need something done.

user level (n.), user-level (adj.)
"where the user is" mentally; his level
of involvement. User-level system,
system set up for people who are not
thinking about computers but about the
subject or-activity the computer is sup-
posed to help with.

naive user (n.), naive-user (adj.)
person who doesn't know about computers
but is going to use the system. Naive-
user systems are those set up to make
things easy and clear for such people.

(We are all naive users at some
time or other; it's nothing to be ashamed
of, Though some computer people seem to
think it is.)

idiot-proof
not susceptible to being loused up by a
naive user.

The hostility in this term may in
some cases be real. Computer people
sometimes forget, or do not wish to tol-
erate, the degree of confusion that naive
users bring to the keyboard. This atti-
tude is not just their problem but every-
body's, since they lay it on us.

good-guy system
term to be used here for naive-user sys-
tems that are friendly, helpful, simple
and clear.

stand-alone system
system (regardless of purpose) which
doesn't have to be attached to anything
else. (May contain its own computer.)

(s "%D

not the size or brand of computer.

TWo KINYS OF TERMINALS

You would think the fundamental dichotomy
among p i was those that
print on paper and those that show you stuff on
a screen. Butitisn't. (That's like the difference
between people and whales-- much greater outside
than inside.)

Actually the fund 1 distinction b
inals is b ASCII (p d "Askey")
and IBM terminals. ASCII is a code and scheme
of organization which was adopted by "the indus-
try," under the blessing of the National Bureau
of Standards. But IBM has pointedly ignored this
standard.

The principal terminal of the ASCII type,
in sheer numbers, is the model 33-ASR Teletype
(trademark of Teletype Corp.), so this kind of
terminal is called the "33 ASR type," or "Teletype-
type," or we even say a given terminal "looks
to the computer like a Teletype."

We Pller makel (33ASR)

W simplr model (35KSR)

=y 5 dne by s Ile
M ?}..u:) oy linder.

IBM, however, seems to like changing its
systems around a lot, for instance changing its
codes when it brings out a new computer. (For-
tunately, it just happens that they also sell adap-
ters between them. Whew.) So IBM-type terminals
are different by design.

There is one main type, however, exem-
plified by the IBM model 2741 terminal. Thus we
say a terminal is an "IBM-type" or "2741-type"
terminal.

Both Teletype- and IBM-type terminals
come in either video-screen or printing models,
from a variety of manufacturers.

Indeed, even the Selectric (IBM n‘ndemarly‘y
p==<] typing appears in some
Teletype-type terminals.

There is a very important performance
difference between ASCII and IBM terminals.
The ASCII terminal can send each character typed
by the user-- each "keystroke"-- to the computer
immediately. This means that highly responsive
programs can be written, which examine the user's
input and can reply instantaneously, if need be,
after anything the user types.

IBM-type terminals, however, require a
"line feed" character or an "end of transmission"
character to be typed by the user to make it the
computer's turn. This locks the keyboard so the
person can't use it. Then the computer must type
something, ending with its own "unlock" signal
that makes it the person's turn again.

Why this unwieldy design? Supposedly it
results from the curious decision, in the design
of IBM's 360 computer, to make all devices
resemble the card reader as far as the computer
is concerned. Just as the card reader reads
punched cards till the last one is done, the IBM
terminal is designed to send and receive characters
until a "finished" condition is reached.

It makes sense to own your own:

€ IN
S FK‘EU ‘:I‘G%m ke,

All are ASCII-type unless otherwise noted.

Note: there are hundreds of types and
brands of terminals available. These are just
some thoughts.

PRINTING TERMINALS .

BEST BUY? The model 38 ASR Teletype
gives you upper and lower case, and is otherwise
similar to the standard model 33. $70 a month from
RCA Service Comp , Data C icati Div.
(offices in major cities); $15/mo. for the coupler.
30-day cancellable but costs $50 to put in, $24 to
take out.

There is a cute terminal that behaves just
like the 33 ASR, but is faster and uses NCR
pressure paper or a ribbon, interchangeably .
The Extel Series A teleprinter from Extel Corp.,
310 Anthony Trail, Northbrook, Il1. 60062.

If you like Selectrics, but want to go to ASCII,
there is one weird possibility .

A firm called Tycom Systems Corporation
(26 Just Road, Fairfield NY 07006) offers an
interesting alternative. It happens that all Selec-
trics (anyway, Model I and Model II) have a seam
around the midriff at which the typewriter can
be unscrewed into two sections. Clever Tycom!
They make a device which ﬁﬁ between, looks to
the bottom like the top of the Selectric, and looks
to the top like the bottom. Also, it turns the
Selectric into a terminal, receiving ASCII codes
from whatever computer you attach it to and
causing the computer to type them, or sending out
what you type to the computer in ASCII.

Curiously, IBM has given its blessing to
this arrangement, meaning you can have this
sandwich deal done to a Selectric you rent from
IBM, and serviced under beefed-up IBM mainten-
ance agreements ($72 per year, or $16.50 per hour,
as of 1970) .

DISPLAY TERMINALS (see pp. DM 20-1)
There arc nany brands. 3onc ase video.

The earlier video terminals came with
dreadful styling, like a 1940s science-fiction
movie. But as an example of how the market is
d ping, one of the h video terminals
is the $1300 Mini-Tec from TEC Incorporated,
9800 North Oracle Road, Tucson, Ariz. 85704.

It comes covered with wood-grain contact paper
and looks very nice. (You should have seen
their early models.)

The Hazeltine 1000 video terminal rents
for $49/mo. on a 1-year contract. LOWER-CASE
OPTION; modem and coupler apparently not
included. (Hazeltine, Greenlawn, NY 11740,
with offices all over.)

-
"o_lerk»e
i 1 phone
andset m rlug

If you have no objection to ITT, they offer
& portable video terminal with built-in modem
and coupler, the Asciscope, for $65/month.
Supposedly there's a long waiting list. (ITT
Data Equipment and Systems Division, East Union
Ave., East Rutherford, NJ 07073.)

Yor a display terminal in your car,
see Kustom Electronics, Inc. (aren't they the
rock-amp people?), Data Communications Division,
1010 West Chestnut, Chanute, Kansas 66720.
They've already set up travelling terminals for
the mobile constabulary of Kansas City (Mo.),
Palm Beach and Nashville. (Communications,

Jan. 73, ad p. 47.) Now, of course, you'll need
a whole stationary radio setup to run that...

Classic

Tkl
MISCELLANEOUS

Various firms rent terminals, some on a
short-term basis. (Some terminal companies
are bad news, keeping up their equipment badly
and offering poor service, so watch it.)

(The day will come, let's hope it's soon,
that you can rent a terminal overnight or for a
weekend like a movie camera. But till people
get a sense of how far and fast things are moving,
we'll i to sch along haph dly .)

Unfortunately rental people are hard to find,
since they are usually local, and the Yellow Pages
idiotically Iump together every possible form of
computer sales and service under "Data Processing
Equipment and Supplies," and few firms further
specify their business in the listing.

Here are some names (neither endorsed nor
criticized):

Computer Planning & Supply, Chicago

TTS Systems, LA

Vardon & Associates, Dallas

A good outfit, that rents both ASCII and
IBM-type terminals of their own manufacture, is
Anderson Jacobson Co. (1065 Morse Ave.,
Sunnyvale, Calif. 94086, and major cities). They
have a Selectric terminal, for instance, which
rents for about $100 a month (about the same as
the standard IBM 2741) but is portable.

To provide a memory with your ASCII or IBM-
IBM-type terminal, an odd machine called the
Techtran 4100 (about $1000 from Techtran Indus-
tries, 580 Jefferson Rd., Rochester, NY 14623) can
be used for offline storage. It uses a magnetic
cassette. Here are some things you can do with it:

type stuff into the Techtran,

later squirt it to a computer at high speed
receive stuff from a computer at high speed,
later type it back automatically on
the terminal
type into the Techtran, correct it, and then
have it typed back automatically--
no computer.
The question of whether the Techtran can be used
with the Digi-Log has not been publicly resolved.

It happens that Anderson Jacobson (above)
will rent you their 2741-type Selectric terminal,
with a Techtran, for about $220 a month total.
But they won't rent the Techtran separately .

A 2741-type Selectric terminal with memory,
offering these same capabilities, is now available
from IBM! It is the Communicating Mag Card
Executive (CMC). Since the Mag Card Executive,
to which they have added the communication
feature, costs over $200 a month, figure the
communication feature could cost another $100
or so monthly, or probably half again as much
as the Anderson-Jacobson.

Honeywell (Honeywell Information Systems,
Wellesley Hills, Mass.) has recently made
available a Braille program to be used with
"standard terminals" in their systems. (This may
be the adaptation developed at MIT to do Braille
on the 33 ASR.)

For those of us literary types who want
upper and lower case but are stuck with 33ASRs,
a LOWER-CASE CONVERSION KIT is available from
Data Terminals and Communications, Campbell,
California.

Sumathioy oled T Cowpif s swale
ot sits o o Selectrie and mskes

3 temmnsl. (K poncled bysofeserds.)

FURTHER POOP

If you're serious about keeping up with
dev in the area, you might
want to subscribe to Terminals Review ($28/yr.),
highly spoken of by Datamation. (GML Corp.,
594 Marrott Rd., Lexington, MA 02173.)

A "CRT Survey" listing characteristics
of 110 CRT displays (including both video ter-
minals and fancier pictorial displays-- see flip
side of this book) is available for ten bucks
postpaid from Datapro Research Corp., One
Corporate Center, Route 38, Moorestown, NJ
08057.

Saudarh Jupin Terms)
ofm)\mkr;‘nﬂ&u

from DEC (se@ p. ST),

It's fha wmodel Y108, Y3000,

VIDEO TERMINALS WITHOUT THE VIDEO

A very hot item right now is a terminal
called the "Digi-Log"-- actually several different
models-- available from Digi-Log Systems, Inc.,
666 Davisville Rd., Willow Grove, Pa. 19090.

This device fits in a briefcase. Basically
it is a keyboard with a socket for the phone,
and an antenna wire. You phone the computer,
drop the phone handset in the slot, and clip the
wire to the antenna of a TV set. Presto! On the
TV set appears what you and the computer type
at each other.

This is especially good for t ing
salesmen (to communicate with their offices and
ordering system via time-sharing computer)
and executives who do computer work from the
road. Also for people who want to show off
remote computer systems.

Disadvantage: only 42 characters per line,
which is awkward for some things, such as
programming in Fortran.

Price: $1200 to $1400. They also lease, at
rates as low as $40/month (3 years).

No lower-case as yet.

Also available on rental, supposedly, from
Westwood Associates, Inc., 50 Washington Terrace,
East Orange, NJ 07017.

Ann Arbor Terminals, Inc. (Ann Arbor,
Mich.?) is said to offer a similar unit that is
very nice.

The equivalent IBM-type terminal-- keyboard,
coupler and clip to the TV-- is the IPSA-100,
offered by I.P. Sharp Associates, Inc. (Bridge
Administration Building, Bridge Plaza, Ogdensburg,
NY 13669). Unfortunately it's much larger than
the Digi-Log-- it comes in a medium-size suitcase
-- and more expensive ($1700 up). However,
they offer the APL character-set (see APL under
"Magic Languages,” p.”2) as an option-- even
a model with both normal and APL character-sets
as a switch-selectable option (costs even more).

Recently, of all things, plans for a do-it-
yourself unit of this type were announced in a
pop electronics ine (Don L ,
"TV Typewriter," Radio-Electronics, Sept. 1973,
43-52). This does not include the full plans,
which are available for $2 from TV TYPEWRITER,
Radio-Electronics, 45 E. 17th St., New York,

NY 10003.

Supposedly this can be built for "around
$120"-- probably a deal more-- if you are a skilled
electronics builder or technician. But that looks
to include a great deal of labor.

The finished unit holds up to 32 characters
per line and up to 16 lines on the screen; a second
memory can be added, to hold a second alternative
screenful.

Upper case only.

TYPE RIGHTER:
The Migie Typewrilers

A number of different systems are coming
on the market to aid you in error-free typing.

IBM would have you call these 'word pro-
cessing systems," since that makes them sound
of-a-piece with their dictation equipment. Ac-
tually they're text regurgitation systems, but
let's just call them Magic Typewriters.

Prices of these things tend to run between
$100 and $250 a month.

Generally these are being sold as secre-
tarial aids, partly because they tend to be too
ungainly for use by writers themselves.
principal use has been in large law offices,
where contracts, wills and such are stored as
"boilerplate" (standard sections of Document)
and then modified slightly by the lawyer to
justify the legal fees.

Such systems all basically consist of
three things:

A typewriter, connected to some sort of
magnetic memory, such as a tape, coated
card or disk, and

editing circuitry, which responds to

various acts by the user.

WHAT THEY DO: allow you to type stuff in, which
is both typed on the paper and at the same time
stored on the magnetic whatever. Small errors
you correct as you type along, generally by
backspacing.

When you want a clean copy-- Presto Wait-o!
Put in clean paper, start the magnetic whatever
at the beginning, and the typewriter retypes it
without a mistake.

If you're lucky.

Unfortunately some of these systems are
quite badly thought out. In one or two cases
I am not sure whether they are designed as they
are accidentally or on purpose. Neither inter-
pretation is flattering to the manufacturer.

I have had extensive experience with two
of these systems, the IBM Mag Tape Selectric
and the IBM Mag Card Executive. Suffice it to
say that if I believed that these systems were
as cumbersome as they are by accident, then the
sections in this book on IBM and its products
might have a very different slant. As it is,
these systems require a training period of (say)
a week, and require such continuous attention
to their curious mechanics that the user is
given little opportunity to think of anything
else. In both cases, in my opinion, the super-
ficial plausibility of the initial design prem-
ises knots into tangled ramifications which
verge on the preposterous. Much of this book
was written on a Mag Card Executive-- and I'm
damned sorry I bothered.

Some systems of this type are:

The IBM Mag Tape Selectric (MT/ST or MTST).
Records on sprocketed 1emm mag film of the type
used for movie sound recording, and you have two
different tapes to get confused between.

The IBM Mag Card Executive. Records on a
plastic llollerith card (see p. 2 &) coated with
magnetic oxide. Variable width of characters
presents fascinating difficulties.

The IBM Mag Tape Selectric Composer (MT/SC,
MTSC) . Produces lovely results with the Selec-
tric Composer, a very fancy Selectric. But has
complications well beyond those of the Mag Tape
Selectric. [ven more variable widths than Mag
Carﬂ_‘_?;ecutive. Uses same mag-film cartridges
as .

(Note: for those who like the output from
the above devices, but appreciate also the rela-
tive difficulty of their use, there is available
a computer peripheral device which reads and
writes these 16mm mag tape cartridges. I don't
know who makes it, unfortunately.)

IBM's latest is called the Magnetic Memory
Typewriter, and seems to store up to one page in
a hidden memory. Apparently you can't set it
aside, like the cards or tapes.

. A firm called Redactron makes magic type-
writers using either cassettes (audio-type) or
mag cards (like the Mag Card Executive).

A firm called Savin does the same thing,
using a Tycom Selectric Sandwich (see under
"Printing Terminals," nearby).

Olivetti has one called the S-14 Word Pro-
cessing System. Their cartridge (a disk?) stores,
they say, 150 pages of typing.

Two other outfits in the field are Trendata
and Quintype.

Woops! Here comes Sperry Remington! (Sperry
Remington?) They have one too.

For those interested in this sort of thing,
there is an International Word Processing Associa-
tion (Maryland Road, AMS Building, Willow Grove,
PA 19090.)

See also the Flip Side of the book for more
high-performance text systems.

OMPUTER LWGU@

are what make computers go 'round.

If your computer only did one thing,
then to start it you'd only need one button to
press.

If your computer only did two dozen
things, without variations, then you could
let each operation be started by pressing
one of the keys of the terminal, and that
would be that.

But that's not what it's about.

We have lots of different things that we
want computers to do, and we want one com-
mand to work on different varieties of data, or
on the results of a previous command, or even-
to chew on another command itself; and so a
computer language is a contrived method of
giving commands to a computer that allows
the commands to be entwined in a complex fashion.

This means having rules the computer can
carry out and the person can remember.

This means having basic operations that
can be built into bigger operations (routines,
subroutines, subprograms, programs).

Thus a computer language is really
a method by which a user can tie these
programs together. Computer languages
are built according to contrived sets of
rules for tying programs together. Such
rules are limited only by the imagina-
tion of their contrivers. Each computer
language has its own contrived system of
rules, and it may be completely different
from the contrived rules tying together
any other computer language. (That's one
reason for here presenting three differ-
ent computer languages, to show some of
the mad variety that can exist.)

Computer languages tend to look like
nothing else you've ever seen. Thus com-
puter programs, which of course have to
be written in these computer languages,
look pretty weird. Some programs look
like old train schedules (in multiple
columns) . Some look a little like prin-
ted poetry. In any case, a COMPUTER PRO-
GRAM NO MORE LOOKS LIKE ITS RESULT THAN
THAN THE WORD "COW'" LOOKS LIKE A COW.

One of the central concepts of this
book is that of a'"program follower," a
dynamic entity which somehow follows a
program. Well, EVERY LANGUAGE HAS A PRO-
GRAM FOLLOWER FOLLOWING ITS OWN PARTI-
CULAR RULES. These rules are contrived
for convenience, suitability to a purpose,
and "aesthetics" of a sort-- often some
form of stark compression. (The program
followers wired into computers are some
what more akin to one another; see '"Rock
Bottom," p. 32.) About all we can say
languages have in common is: EVERY COM-
PUTER LANGUAGE ALLOWS LOOPS, TESTS AND
BRANCHES, AND COMMUNICATION WITH EXTERNAL
DEVICES, as mentioned on p. 11. Beyond
that the differences are incredible.

So the basic secret of computer peo-
ple is this: it's not that the necessar-
ily know so much, but they can adapt to a
whole new world of possibilities more
quickly.

I %

PROGRAMS VS. SYSTEMS: . .
A Vague Guideline to a Vague Distinction

y p , without
ing with the outside world;

A "program” runs on an

a "system" involves a whole setup, of which the computer
and a program in it are just the central things.

TAREE o
COMPUTER LANGUAEES
For_fou

Everyone should have some brush with
computer programming, just to see what it is
What it is: casting mystical spells
in arcane terminology, whose exact details
have exact ramifications.
or typing to the computer in some way that re-
quires intelli by

and isn't.

These languages have been chosen be- 15
cause they are important, very different
from each other, very powerful, influential
and highly regarded in the field, interac-
tive from time-sharing systems, and very
suitable for making interactive programs

and "good-guy systems."

is different.
quite suitable for both.

What it isn't: talking

the hi

an intricate technical art. What it isn't: science.

Why three languages?
look too much alike.

do you get any sense of the variety they take.

These three languages make it possible
in principle for you to learn computers
with no coaching.
ple) is your own terminal, and time-sharing
accounts with firms running BASIC (most of

What it is: everywhere.

computer language.
Because one would

Only by perusing several
well known.

All you need (in princi-

for its inventor.

them do), TRAC Language (for availability
see p. 21), and/or APL (for partial list of

sources see p.

Why these three?
One, they can be used from a terminal, which
means that you could in principle get a terminal
in your home and play with the computer from
But this is expensive,

over the telephone.

25).

Several good reasons.

types of data.

and at worst fraught with accidental financial

liabilities, so the possibility is minor right now.
Nevertheless, it should be practical and inex-

pensive fairly soon.

is much easier

frem interactive terminals.

A computer language is a system for tying

Input to computers

To Liron,
Q-T‘lk

Each nay be used to create programs
for science, business or recreation.

Because these languages can be used
from a terminal, and thus learned quickly,
we might call them Quickie languages.

Note: interactive languages mean you,
the programmer, can change your program
from the terminal; interactive
are those which interact with u

mml_ﬂ}s;
sers, which

However, these languages are

Another reason for these three: they
represent, in a way, several major types.

BASIC is a widespread and fairly standard
language-- that is, it is available on computers
Moreover, it looks rather like
Fortran, which is the most important "scientific"

TRAC Language, though well-known among
researchers, has mighty powers that are not so
Moreover, it achieves its pow_ers
through the simple and highly consistent following
of a few simple principles, and is thus both very
easy to learn and an elegant intellectual triumph

Moreover, it is a so-called "list language,"
meaning that it can handle information having
extremely varied and changing form-- a very
important feature to those of us interested in
computer applications like picture-making and
text handling, which use amorphous and busy +
(See "Data Structures," pp.2 ')

TE-SHANTG
Nt CompreR

The best way to start programming is to have a terminal runm:
and a friend sitting nearby who already knows the language
but can be interrupted with questions.

In the contemplation of these three lan-
guages you may begin to see the influence of
the individual human mind in the computer field,
quite contrary to the stereotype. I would like
to stress here that each of these three languages
represents somebody's individual personal ach-
ievement, and is in turn a foundation upon
which others, writing programs, can build
their own.

Two of these languages permit the
creation of interactive programs that work
on a line-by-line basis; in addition, TRAC
Language (pp. 18-21) permits the creation
of systems that react to any character the
user types in, rather than waiting for the
carriage return at the end of a line. This
permits you to program user-level systems
that are even more responsive.

IF YOU'RE SCARED. Don't worry, it's
not a test. Flip the pages and look at the exam-
ples. (In particular, you might look for the
same program which appears in each language:
a program to cause the computer to print
"HELP, I AM TRAPPED IN A LOOP" forever.)

This book is organized so you can look
at it or skip it in any order, so there is no
particular reason you have to fight through
the next three chapters if you want to press on.
But if you want to study these languages, by all
means do so.

Languages that can be used from a terminal
are called on-line languages. There are a num-
ber of other popular on-line languages: JOSS
(the original), FOCAL, LOGO, SPEAKEASY. I'm
just sorry there's no room for them here.

APL is another elegant language, also
worked out handsomely from certain basic ideas
by a very thoughtful and inspired inventor.

Some popular non-interactive languages
are briefly described on pp. 30-31.

A
\\ .

a4

.

ning an interactive language,
and has something else to do

And you just try stuff.

Till more and more you get the feel of it.

And find yourself writing programs that work.

together the fundamental operations of

computers for larger tasks.

Each computer

language fits together according to its
own principles, based in part on the per-
sonality and preoccupations of the person
or people who designed it.

Modern computer languages generally can
handle all the main kinds of programming:

text handling,

nuinber crunching, storing

files on disk memory and getting them back,
and controlling whatever external devices

vou may have.
way or other.

Even making pictures in some

In this book we will try to give you a
smattering of all these.

THE BEST WAY “To LEARW.

THkee bwche (cmpefer

N

Sh es:
5&9/&(” /6‘/'0

TK&C/@) LavvaJe 0, /18-2 y
AL (p. 22-5)

|

"(ompuree ExXT {D1vORS"

The Moving Finger writes; and, having writ,

Moves on: nor all your Piety nor Wit
Shall lure it back to cancel half a Line,

Nor all your Tears wash out a Word of it.

Khayyam/Fitzgerald

Numerous interactive programs exist for
editing text at computer terminals-- in other
words, for doing what Magic Typewriters do, but
using a computer instead of a small special-
purpose machine.

Unfortunately most of these systems are
dreadful. Dreadful, that is, for ordinary
human beings. What computer people seem to
think of as appropriate systems for handling
text are totally unsuitable for people who care

and think a lot about text, although they may
be good for Computer programmers.

Such systems allow you to insert text
(with some difficulty), delete (with some dif-
ficulty), and rearrange (maybe).

Ordinarily the user must learn an explicit
command language, some system of alphabetical
commands that have to be typed in to effect any
change in the material. Programmers think this
is good for you and toughens the mind.

The text is usually stored as a series of
alphabetical and punctuation codes in the com-
puter's core memory. The area it occupies in
the core memory is called a core buffer.

The program generally gives the user an in-
aginary "pointer," a marker specifying what point
in the text the program is currently concerned
with.

What is the pointer for? It specifies where
the operations are to take place. "Insert," for
example. If text is inserted, it will go into
the place presently pointed at.

Many of the commands are concerned with con-
trolling the current position of the pointer,
moving it backward or forward by a specific num-
ber of characters (including punctuation marks
and spaces) or lines (known to the program by the
carriage-return codes interspersed in the text).

CoMPUTER ~SEYLE TEXT SYSTEM.
::‘4 at’fos’::t:’;cévhhrv‘f W""H "’-
—fl.@@@(ﬁ(ﬁ(ﬂ@@(m@ OEO®E P
T~ . €y

T se
T alatolcs)

FLOR
(L FEFEOMEN N @ A5)

- \\
2159 »O@m O OEARTEQ N

@17z Thebo—

In this simplified illustration, the poin-
ter can be moved forward and backward in the
text by various commands. Typing "B" moves the
pointer to the beginning. "L" takes it to the
end. '"L" moves it to the beginning of the line
it's presently on, and the commands "C" and "L,"
when given with numbers, tell the pointer to
move forward or back the specified number of
positions. For instance:

3C Move forward 3 characters
-4C Move backward 4 characters
2L Move forward 2 lines
-2L Move backward 2 lines

and so on. Note that these operations are not
god-given, but that the particulars of how they
behave and work together are determined by the
personal quirks of who programmed them.

Another feature many of these programs have
is called a 'context editor' feature. So-called
context editing moves the pointer from its pre-
sent position to the next occurrence of a speci-
fic string of characters: for instance, the next
occurrence of the word CHIAROSCURO. Often such
commands permit you, by giving the command prop-
erly, to replace any given word or phrase with
any other. It was drily remarked at a recent
conference that this would allow a writer to
change every occurrence of "or" in his writing
to "and." Yet programmers seem to think this is
a feature writers want.,

(For programmers' purposes this is a very
good facility; indeed, a whole computer language,
SNOBOL, is built around it; -- see p. 31. But
it has nothing to do with normal text.)

This type of thing is totally unsuited for
the literary types of people who care most about
text and its characteristics (connotations,
twists) which can not be found by definable
structured search.” And who should not be forced
to deal with explicit computer languages because
it tends to interfere with the thought processes
they are supposed to be pursuing, if not make
them physically ill.

YOUR FIRST COMPUTER LANGUNGE :
DARTMOUTH'S

BASIC

The BASIC language, also called Dartmouth-Basic,
was introduced in the sixties at Dartmouth College by John
Kemeny and Thomas Kurtz. lt wna intended to be a simpls
and easy-to-learn intr prog:
yet powerful enough to do uaeful things It has grown ln
use, in recent years, both as the foremost beginner's language,
and as a perfectly fine language for doing many simple
kinds of work-- like custom business applications, statistics,
and "good-guy" systems for nai. 2 users as discussed elsewhere
in this book.

Kemeny is now president of Dartriouth, and Kurtz
runs their high-power time-sharing computer center, so
BASIC has a permanent home base there.

Note that the name BASIC does not refer to the bottom-
level or elemental languages of computers. BASIC has
been contrived specifically to make programming quicker
and easier. It is not "basic" to all computers; such bottom
languages are called "machine ianguage" or "assembler
language" (see pp. 32-5)

The simplicity of the language begins at the program
input, or editing, level. Each command of BASIC must
be on a separate line, and each line must have a separate

line ber . PP you accid lly type in

$0 IMPUGN Y

when you meant "INPUT" instead of "IMPUGN.". You may
replace that command at any time by typing the same line
number and the new version of the line,

50 INPUT Y

which automatically replaces the previously line 50. If
you want to get ria of the line entirely, you type

50

and an end-of-line code, and the whole line is gone.
Example of a BASIC command:
153 LETX=Y

You can choose any line numbers you want, but the lines
are automatically put in the order of their numbers. Since
when you write a program you don't usually know at the
outset what it will look like later, you try to leave enough
gaps in the numbers at the start to fit in the instructions
you might want to put between them later.

THE SETTING

To begin with, there must be a computer, and it
must have a processor for the BASIC language, that is,
a program for carrying out the operations of Dartmouth-
BASIC. We will assume that this BASIC processor is all
set up in core memory ready to go.

conpoler

(Note: This is how it looks -
in a minicomputer. On

a time-sharing system there's
a lot of irrelevant other

stuff going on, which we'll
leave out.)

And we will assume, as previously mentioned, that you

have some kind of a terminal-- that is, a device with a keyboard,

some kind of place the P can send to you
and vice versa, and is more or less standard.

Now then: all that is needed is for you to understand
the BASIC language, and you can program this computer
within the confines of BASIC.

=1t is one of the strange upects of this ﬂeld that
can be taught independently of di of
the machine itself.

When you type in a program, the BASIC processor
will do certain things to it (actually cook it down) and store
it in core memory:

dore memory
SASI¢

proeessor

Your prograim

wmosed

N

Every time you change one of the lines of the program the

BASIC processor will insert, delete or replace lines as

you have ded, then r ge whatever's left accordingly,
in order of the line numbers.

Then when you tell the processor to start the program,
by typing (with no line number)

RUN
the processor will start the program going at the command
with the earliest line number, and your instructions will
be executed according to the rules of BASIC.

Now we will consider some of the ds (or stats ts)
of BASIC.

___A‘_—

These two boys had never seen a computer before,
but I loaded it up with the BASIC language processor,
showed them a few basic commands and told them to
turn it off when they were through.

I got back ten hours later and they were still at it.

Too bad kids have such short attention spans.

—_—

VARIABLES

The BASIC language, like a ber of other 1
allows you to set aside places in core memory and give
them names. These places may hold numbers. They can
be used to count the number of times that things are done
(or not done), to hold answers, numbers to test against,
numbers to multiply by and so on.

In BASIC, these places are given names of one alphabeti-
cal letter. That means you can have up to 26 of them.
Examples:

A E I O U sometimesY evenX

Because these named spaces in memory may be used
something like the way letters are used in algebra, we
call them variables. In fact, each one is a place with a
name.

(nane)

LN Q

(memery slot. Actua| addvess codd be
13, 4032 o+ wlatever)

’ 4“-"“\‘“

If you use the names B,C and D for variables in your
program, the BASIC p: will automatically set up
places for them to be stored.

Ore MmOy
T

BASIC
ProcessOR

<3
N
~E
M

The END command

The END d in BASIC simply ists of the
word END. It must come last in the program. Therefore
it must have the highest line b

99 END
The PRINT command

Whenever the program follower gets to a PRINT command,
it prints out on the terminal whatever is specified. Example:

97 PRINT "HAIL CAESAR. BIRD THOU NEVER WERT"

When and if the program follower gets to this command,
the terminal will print out

HAIL CAESAR. BIRD THOU NEVER WERT
The GOTO command (pronounced "Go 2")
The GOTO command tells the program follower the

ber of the next d for it to do, from which it
will go on. Example:

62 GOTO 99

which means that when a program follower gets to command
#62, it must next jump to 99 and go on from there, unless
that happens to be the END statement.

A SIMPLE SAMPLE PROGRAM
These are enough commands to write a sample program.

43 PRINT "HELP, I AM CAUGHT IN A LOOP"
67 GOTO 43
68 END

The program will start at the first instruction, which
happens in this case to be instruction number 43. That
one prints a message. The next d, by line ber,
is 67. This tells the program follower to go back to 43,
which it does.

43 PRINT "HELP, I AM CAUGHT IN A LOOP" 6——1
67 GOTO 43

68 END
The result is that your terminal will print

HELP, I AM CAUGHT IN A LOOP
HELP, I AM CAUGHT IN A LOOP
HELP, I AM CAUGHT IN A LOOP

interminably, or until you do something drastic. It never

gets to the END . (Two strategies for doing something
drastic are usually to hold down the CONTROL button and

type C, or hold down both CONTROL and SHIFT buttons,

if you have them, and type P. One of these usually works.)

The LET command

The LET command puts something into a variable.
Example:

43 LETR=2.3

What is on the right side of the equals sign in the last statement,
in this case 2.3, is stuffed into whatever location of core
memory is designated on the left side, in this case a place
known to you only as R. With the result that someplace

in core memory is
12-3

The LET statement is m example of an assignment stltcment N
which most P ges have; an assig

assigns a specific piece o infc tion (often a ber,

but often other things) to some name (often standing for

a particular place in core memory).

The LET command in BASIC can also be used to do
arithmetic. Example:

14 LET M =2.3 + (12%7999.1)

(The asterisk has to be used for multiplication because
traditionally terminals don't have a times-sign.) BASIC
will work this out from right to left and store the result
in M.

The INPUT command

The INPUT statement asks the person at the terminal
for a number and then shoves it into a variable. Example:

41 INPUT Z

which causes the terminal to type a question mark, and
wait. When the user has typed in a number followed by
a carriage return, the BASIC p stuffs the b
into the variable and proceeds with the program. Here
is a program using the INPUT statement.

i
b3

10 PRINT "HOW OLD ARE YOU"

15 INPUT A

20 LET B=A/40.0

25 PRINT "YOUR AGE IS", B, "TIMES THE AGE
OF THE EMPIRE STATE BUILDING."

30 END

This will cause the following to happen:

Program types:
HOW OLD ARE YOU? 20
Teiwer
am types:

YOUR AGE IS .5 TIMES THE AGE OF THE EMPIRE
STATE BUILDING .

The IF command

The IF command is a way of testing what's stored
in a variable. Example:

88 IF M = 40 then 63

This tests variable M to see if it contains the number 40.

If M is indeed 40, the program follower jumps to line 63.

If not, it goes right on and takes the next higher instruction
after 88. The IF can test other relations than equality,
including "less that," "greater than," "not equal," "less
than or equal to," etc. For instance,

89 IF Q 7 then 102

will send the program follower to command 75 if variable
Q contains a number less than 7. (Note that different BASICs
for different computers may have slightly different rules

here.)

The BASIC language, developed at Dartmouth, must not be
fused with the underlying binary languages of individual

computers (see "Rock Bottom,"” p.32). These underlying
codes are called "machine languages" (or, in a dressed-up
form, easier to use for programmers, "assembler language").
These are the basic languages, different for each machine.
Dartmouth BASIC, or jut plain Basic, is a widely available,
standardized, simple beginner's language.

_——ﬁ__

ANOTHER PROFOUND EXEMPLARY PROGRAM

2 LET Z =25
ﬁ 10 PRINT Z, " BOTTLES OF BEER IN THE WALL"
15 LETZ=2-1
r---62 IF Z = 0 GOTO 74

! 63 GOTO 10
L->174 PRINT "TIME TO GO HOME."
75 END

The program will start typing thusly:

25 BOTTLES OF BEER IN THE WALL
24 BOTTLES OF BEER IN THE WALL

and so on, until Z has reached 0; then it will type

0 BOTTLES OF BEER IN THE WALL
TIME TO GO HOME.

and then it will stop .

You will note that this program, like the one that
printed "HELP, I AM CAUGHT IN A LOOP," has a loop,
that is, a repeated sequence of operations. The first one
was an endless loop, which repeated forever. This loop,
however, is more well-behaved (by some people's standards),
in that it allows an escape when a certain criterion has
been reached-- in this case, printing a line of text 25 times
with variants.

The reason we are able to escape from this loop is
that we have a test instruction, IF statement number 62.

It is very important for the programmer to include
tests which allow the program to get out of a loop. This
may be couched as a motto, viz.:

LEAK BEFORE YOU LOOP.

AN AUTOMATIC LOOP

Indeed, for people who are big on program loops,
BASIC provides a pair of instructions which handle the
program loop completely. These are the FOR and NEXT
instructions. We won't show them here, but they're not
very hard. Using the FOR command, you can easily direct
the computer to do something a million and one times, say.
This can be exhilarating. You can even direct it to include
that program in something to be done a billion times, resulting
in a program loop that would be carried out over a trillion
times. All in a short program! But of course this is just
power on paper; we want our programs to be useful, and
finish their jobs in the present century, and so such flights
are just mental exercises.

FAST ANSWERBACK WITH BASIC (in some versions)

ical "

If you want a fast toa qt
you can do it without the line numbers. typing in

PRINT 3.1416 * 7124

will cause BASIC to print the answer right out and forget
the whole thing.

TEXT STRINGS IN BASIC

The deluxe versions of the Dartmouth BASIC
language have operations for handling text--
or what computerfolk call "strings," that is,
strings of alphabetic characters and punctuation.
These operations tend to begin with $ (standing
for "$tring"?) and there's no room for them here.

But what they mean is that BASIC can type
letters, count the nouns in Gone With The Wind,

or print out the nine hundred million names of
God.

If you write the program.

THIS IS A SERIOUS LANGUAGE,
AND CAN SAVE SOME COMPANIES A LOT OF MONEY

BASIC is a very serious language. Advanced versions
of BASIC have instructions that allow users to put in alphabetical
information, and store and retrieve all kinds of information
from disks or tape. In other words, BASIC can be used
for the fairly simple programming of a vast range of problems
and "good-guy systems" mentioned elsewhere. Complete
BASIC systems allowing complex calculations can be had
for perhaps $3000; a general-purpose computer running
BASIC with cassette or other mass storage, for business
or other purposes, can now be had for some $6000. Allowing
a few thousand dollars for prog: g specific applicati
in BASIC, simple systems can be created for a variety
of purposes that some companies might say you needed
a hundred-thousand-dollar system for.

This is serious business. Languages like BASIC
must be considered by people who want simple systems
to do understandable things in direct ways that are meaningful
to them, and that don't disrupt their companies or their
lives.

This has been a very hasty and brief presentation
in which I have tried to convey the feeling of this important
language. If you have the chance to learn it, by all means
do.

SOME FUN THINGS TO TRY IN BASIC
Write a program that prints calendars.

Write a program that converts an input number to
Roman Numerals.

Write a dialogue system that welcomes the user to
the sanitarium, asks him questions, ignores the answers
and insults him. (Use the INPUT statement for receiving
numerical answers. Since the answers are ignored they
can all be stored in one variable.)

WHERE TO GET IT

(Features of the BASIC language vary considerably
from system to system. Which ones offer the highly desirable
alphabetic commands and mass storage have to be checked
out individually.)

BASIC is offered on many if not most time-sharing services,

so you can use it from your home on a terminal. (But note that
this can be expensive and even dangerous, if you're paying
yourself; there are not presently adequate cost safeguards to
prevent you from running up huge bills.)

BEST BUY? Rumors persist of a time-sharing service
somewhere that offers BASIC for $5 an hour, total, with disk
storage thrown in. I have not been able to verify this.

DEC offers minicomputer-based systems which time-
share BASIC among several terminals simultaneously. (But
you have to buy the whole big system.) The ones that
run on the PDP-8 are marketed mainly to schools, and for
this reason are called, somewhat peculiarly, EDUSYSTEMS
Their multiterminal system for the PDP-11 is called RSTS
(pronounced "Risstiss,") and is marketed mainly to businesses.

Hewlett-Packard offers BASIC, I believe, on all of
its minicomputers. Of special interest is an odd computer
called the Series 9800 Model 30. You're only allowed to
program in BASIC. (t's actually a microprocessor; see
p.19)

Many other minicomputer manufacturers now offer
BASIC. Data General's NOVA is one.

BIBLIOGRAPHY
Kemeny and Kurtz, BASIC Programming. Wiley, 1967.

DEC's Edusystem Handbook is a very nice introduction
to BASIC, quite pleasant and whimsical; it may be
a good introduction even if you're using other people's
BASIC systems. It's $5 from DEC, Communications
Services, Parker St., Maynard, Mass. 01754.

There is also a programmed text on BASIC by Albrecht
(published by Wiley). For those of us who freeze
at numerical-looking manuals, programmed texts
can take away a lot of anxiety .

MY COMPUTER LIKES ME (when I speak in BASIC).
This book has evidently been put together by the People's

Computer Company, and has some idealistic fervor behind it.

$1.19 from Dymax, Box 310, Menlo Park, Cal. 94025.

%

BASIC is a good example of an "algebraic" type of
language, that is, one formulated more or
less to look like high-school algebra and
permit easy conversion of certain algebraic
formulas into actual runnable programs.
The most widely-used language of this type is
FORTRAN (see p.3l). Thus BASIC is
often referred to as a "Fortran-type language."
The kickeroo-- and if you understand this it's half
the battle-- is that a line of BASIC or FORTRAN
directs a certain event to take place, while
a statement in algebra just describes relations.
The strange resemblance between the descriptive
language (algebra) and the prescriptive
language (Fortran or Basic) is that algebraic
operations (which are just recombinations
and r 8) can be mimicked by the
computer language, and this early obsession
of mathy computerfolk led to making the
computer language look like a descriptive
algebra. Especially with the weird use of
the equals-sign to mean "is replaced now by."
In hindsight this was a ridiculous idea;
some of the more recent languages (Such as
APL) use a left-pointing arrow instead of an
equals-sign, showing that an action is being
called for, rather than a relationship being
described.

17

ARRRYS
an mrod’aﬂ'*ﬂl d‘m&" e

(available in BASIC, APL and many other languages)

Arrays are information setups with numbered
positions. The positions can contain all sorts of
different things, however: numbers, letters or
other data, depending on the data structures
allowed in the language.

ONE-DIMENSIONAL ARRAY
T 34 & () k(D)
1 O A W

[V

TWo -DIMENS 1O NRL ARKey
12 4 h

TRREE -~ DIMENSIONAL RREAY

A one-dimensional array is like a row, a two-
dimensional array is like a tabletop, a three-
dimensional array is like a box, and for more
dimensions you can't visualize.

Arrays are handy for working with a lot of
different things one at a time. They can be given
names just like variables.

Suppose you have a one-dimensional array
named SAM. Then in a program you can usually
ask for the third element in SAM by referring to
SAM(3). Better than that: you can refer by turns
to every element of SAM by using a counting
variable and changing its value. SAM(JOE) can be
any one of the elements of the array, if we set the
value of JOE, the counting variable, to the number
of the position we want to point to.

For arrays having more than one dimension,
the principle is the same. You may refer in a
program to any space in the array by giving a
number in parentheses, or subscript, specifying
the space's position in each dimension. Suppose
you have an array named PRICES, which gives
the prices of, say, various sizes and brands of
TV sets.

Ror Aev. 9" diag.
1A 12"
rR s 245 15"
19"

Mfr. Mfr. Mfr. Mfr. Mfr.
1 2 3 4 5

This is PRICES(3,2)
because it's the item in row 3, column 2.

Suppose you have a two-dimensional array
giving the telephone numbers, salaries and ages
of several different employees of a company. You
have decided to call the array WHAM.

b =
b F= &N
Tel.no.
Salary cee
Age

You can refer to any single entry in this array as
WHAM (IRV,JOE), where IRV and JOE are two
counting variables you've decided to set up.

If you set IRV and JOE both to 1,
WHAM (IRV,JOE) is really WHAM(1,1), which
refers you to the telephone number of employee A.
If you change JOE to 2, that gives you WHAM(1,2),
giving you B's phone; while WHAM (2,1) would be
A's salary.

These are just the mechanics. What you
choose to do with this sort of thing is your own
affair. Counting around in arrays (and core
memory, where they're stored) is called indexing.

THE SLEEPING GIANT

TRAC [yﬁvt}e

A mild-mannered man in Cambridge, Massachusetts,
who owns his own very small business, is the creator of one
of the most extraordinary and powerful computer languages
there is, though lots of people in the field don't realize it.
The language is fairly well-known among professionals, but
its real power is hardly suspected.

If BASIC is a fairly conventional programming language,
strongly resembling FORTRAN, TRAC (Text Reckoning and
Compiling) Language is fairly unusual.

The name of it is "TRAC Language, " not just TRAC —
because it's a registered brand name .i'iike Kleenex Tissues).
Within the rules, the word "TRAC" is an adjective and not a
noun. Thus TRAC is its first name, Language is its last; so
we can refer to "TRAC Language' instead of having to
precede it with the.

1t is included here for several reasons.

1) It is extremely easy to learn, at least for beginners.
Experienced programmers often have trouble with it.

2) It is extremely powerful for non-numeric tasks. In
fact, it is ideal for building your own personal language.

3) It offers perhaps the best control of mass storage,
and your own style of input-output, of any language.

4) It is superbly documented and explained with the new
"The Beginner's Manual for TRAC Language}' which is now
available.

5) It is likely to catch on one of these days. (Some
large corporations have been investigating it extensively.)

It is not so much the basic idea
of TRAC Language, but the neatness
with which the idea has been elaborated,
that is so nice.

As a side point, here is an
important motto for thinking in general
about computers (and about other things
in general):

MAKING THINGS FIT TOGETHER WELL
TAKES A LOT OF WORK AND THOUGHT.

Let Calvin Mooers' TRAC Language be a
shining example.

TRAC Language is great for creating highly interactive
systems for special purposes, including turnkey systems for
inexperienced users and "good-guy'' systems. It combines
this with good facilities for handling text, and what is needed
along with that, terrific control over mass storage. It is
also excellent for simulating complex on-off systems; rumor
has it that TRAC Language was used for simulating a major
computer before it was built.

Against these advantages we must balance TRAC
Language's less fortunate characteristics. For numerical
operations it is extremely slow, if not terrible, compared to
the most popular languages. The same applies to handling
numerical arrays and controlling loops, which are compara-
tively awkward in TRAC Language.

Finally, many programmers are incensed by the
number of parentheses that turn up in TRAC programs; in
this it resembles the language LISP. But this is an aesthetic
judgement.

The TRAC Language has been thought out in great
detail for total compatibility of all parts. (Moreover, by
standardizing the language exactly, Mooers heroically
assures that programs can be moved from computer to
computer without difficulty.)

* TRAC is a registered service mark of Rockford Research,

Inc. Description of TRAC Language primitives adapted by
permission from "TRAC, A Procedure-Describing Language
for the Reactive Typewriter", copyright © 1966 by Rockford
Research, Inc.

1 am grateful to C.A.R. Kagan, of Western Electric
Engineering Research Center, for his extensive
(and finally successful) efforts to interest me in
TRAC Language.

In the well-thought-out ramifications of its basic concept,
the TRAC Language is so elegant as to constitute a work of
art. It beautifully fulfills this rule:

"... the facilities provided by the language should be
constructed from as few basic ideas as possible, and
... these should be general-purpose and interrelated
in the language in a way which avoided special cases

wherever possible." (Harrison, Data-Structures and
Programming, pub. Scott, Foresman, p. 251.)

The fundamental idea of TRAC Language, which has
been worked out in detail with the deepest care, thought and
consistency, is this:

ALL IS TEXT.

That is, all programs and data are stored as strings of
characters, in the same manner. They are labelled, stored,
retrieved, and otherwise treated in the same way, as

strings of text characters.

Data and programs are not kept in binary form, but
remain stored in character form, much the way they were
originally put in. The programs are examined for execution
as text strings, and they call data in the form of text strings.

This gives rise to certain interesting kinds of
compatibility.

a) Complete compatibility exists in the command
structure: the results of one command can become another
command or can become data for another command.

ALMOST NOTHING CREATES AN ERROR CONDITION.

If enough information is not supplied to execute a command,
the command is ignored. If too much information is supplied,
the extra is ignored.

b) Complete compatibility exists in the data: letters and
numbers and spaces may be freely intermixed. Special
terminal characters (like carriage returns and backspaces)
are handled just like other characters, giving the program-
mer complete control of the arrangement of output on the
page.

¢) Complete compatibility also exists from one computer
to another, so that work on one computer can be moved to
another with ease. By the trademark TRAC, Mooers
guarantees it — an innovation.

COMMAND FORMAT

A TRAC command has the following form. The cross-
hatch or sharp-sign is the way this language identifies a
command's beginning.

#(NM, arg2, arg3, arg4,..)

NM is the name of any TRAC command. It counts as the
first "argument, " or piece of information supplied. Arg2,
arg3, etc. are whatever else the command needs to know to
be carried out.

We will look first at examples that use the arithmetic
commands of TRAC Language, not because it is particularly
good at arithmetic, which it isn't, but because they're the
simplest commands. The arithmetic commands are AD
(add), SU (subtract, ML (multiply), DV (divide). Each
arithmetic command takes three arguments, the command
name and two numbers. Examples:

#(AD, 1,2)
is a command to add the numbers 1 and 2.

#(SU, 4, 3)
is a command to subtract the number 3 from the number 4.

#(ML, 632, 521)

is a command to multiply 632 by 521.
#(DV, 100, 10)

is a command to divide 100 by 10.
Now comes the interesting part.

The way TRAC commands may be combined provides
the language's extraordinary power. This is based on the
way that the TRAC processor examines the program, which
is a string of character codes. Watch as we combine two
AD instructions:

#(AD, 3, #(AD, 2,5))
The answer is 10. Miraculous!

How can this be?

r A comma ends an argument
in the TRAC language?
Ah, that all arguments
could be ended so easily.
--My grandfather.

THE MAGIC SCAN

The secret of bining TRAC ds is that
every command, when executed, is replaced by its answer;
and whatever may result is in turn executed.

There is an exact procedure for this:

SCAN FROM LEFT TO RIGHT

UNTIL A RIGHT PARENTHESIS;
RESOLVE THE CONTENTS OF THE

PAIRED COMMAND PARENTHESES

(execute and replace by the command's result);
STARTING AT THE BEGINNING OF THE RESULT,
KEEP SCANNING LEFT-TO-RIGHT
UNTIL A RIGHT PARENTHESIS.

WHEN YOU GET TO THE END, PRINT OUT
WHAT'S LEFT.

The beauty part is how it all works so good.

An arithmetic example — so you get the procedure.
#(AD, 2, #(AD, 3,4))

first right parenthesis
found.

L\,\J execute what's in the

command parentheses
7 & replace
with their answer, leaving:
scan to next right parenthesis
\——~_/ execute & replace

find no more parentheses
print out what's left.

You might try this yourself on a longer example:
" #(AD, #(SU, #(AD, 3,4), #(SU,7,3)),1)
Here is an interesting case:
#(AD,1)

There's no third argument to add to the 1 — but that's
okay in TRAC Language. 1 it remains.

PULLING IN OTHER STUFF

The core memory available to the use is divided into
two areas, which we may call WORKSPACE and STANDBY.

#(ML, #(AD, 7, 3), #(SU, 16, 9))

WORKSPACE

STANDBY

Strings with Names

The Standby area contains strings of characters with names.
Here could be some examples:

names strings

HAROLD
54321
@\@

#(PS, HELP: I AM TRAPPED IN A LOOP)#(CL, PROGRAM)

[GALOSHES)

|I MUSTN'T FORGET MY GALOSHES. |

There is an instruction that moves things from the
Standby area to the Workspace. This is the CALL
instruction.

#(CL, whatever)

The CALL instruction pulls in a copy of the named string
to replace it, the call instruction, in the work area. The
string named in the call instruction also stays in the Standby
area until you want to get rid of it. Example:

#(CL, HAROLD)
would be replaced by

54321
Suppose we say in a program

#(AD, 1, #(CL, HAROLD))

Then the result is:

54322

Now let's do a program loop using the CALL. If we
type in to our TRAC processor

#(CL, PROGRAM)
it should type
HELP; I AM TRAPPED IN A PROGRAM LOOP
HELP; I AM TRAPPED IN A PROGRAM LOOP
HELP; 1 AM TRAPPED IN A PROGRAM LOOP
indefinitely.

Why is this? Let's go through the steps.

We noted that in our Standby area we had a string
named PROGRAM which consisted of

#(PS, HELP; I AM TRAPPED IN A PROGRAM LOOP)#(CL, PROGRAM)
The TRAC processor scans across it to the first right parenthesis.

@LEE_;J AM TRAPPED IN A PROGRAM LOOP)#(CL, PROGRAM)
- —
and now executes this,
It happens that PS is the PRINT STRING instruction.

PRINT STRING prints out its second argument, and forgets
the rest. But the only argument after PS is ! i

19

M.H«ma«um{ Cz/vu, Mooers s'féfs thlo 3 rlmg taoiqj

fears open his formima/, ang

(Pow!)

IT'S SUPERLANGUAGE/

HELP; I AM TRAPPED IN A PROGRAM LOOP
so it prints that. If it had said

HELP, I AM TRAPPED IN A PROGRAM LOOP
the PRINT STRING command would only have printed

HELP
since a comma ends an argument in TRAC language.

Now, the PRINT STRING command leaves no result, so
it is vaporized; all we have left in the work area is

#(CL, PROGRAM)

which is now scanned. But that's another CALL, and when
it is executed by fetching the object called PROGRAM, its
replacement in the work area is

#(PS, HELP; I AM TRAPPED IN A PROGRAM LOOP)#(CL, PROGRAM)
and guess what. We done it again.

(Another example of TRAC Language's consistency:
suppose it executes the command

#(CL, EBENEZER)

when there is no string called EBENEZER. The result is
nothing; so that command disappears, leaving no residue.)

THE FORM COMMANDS

Let us be a little more precise. The Standby area
is really called by Mooers 'forms storage," and a string-
with-name that is kept there is called a form. One reason
for this terminology is that these strings can consist of
programs or arrangements that we may want to fit together
and combine. Thus they are "forms".

1. CREATING A FORM

To create a form, you use the DEFINE STRING
command:

#(DS, formname, contents)

The arguments used by DS give a name to the form and
specify what you want to have stored in it. Example:

#(DS, ELVIS, 1234)

creates a form named ELVIS with contents 1234.

ELVIS - -
E\EZS ﬁl

(Note that to get a program into a form without its being
executed on the way requires some preparation. For this,
"protection’ is used; see end of article.)

It turns out that DEFINE STRING is the closest TRAC
L has to an assi t statement (as in BASIC,
LET A = WHATEVER). If you want to use a variable A,
say, to store the current result of something, in TRAC
Language you create a form named A.

#(DS, A, WHATEVER)

Whenever the value of A is changed, you redefine form A.

2. CALLING A FORM.
As noted already,
#(CL, ELVIS)

will then be replaced by
1234

But a wonderful extension of this, that hasn't been
mentioned yet, is

2A. THE IMPLICIT CALL.

You don't even have to say CL to call a form. If the
first argument of a command — that is, the first string
inside the command parentheses — is not a command known
to TRAC Language, why, the TRAC processor concludes
that the first argument may be the name of a form. So now
if you type

#(AD, #(HAROLD), #(ELVIS))

it will first note, on reaching the right-paren of the
HAROLD command, that since HAROLD is 54321, you
evidently wanted this:

#(AD, 54321, #(ELVIS))

rescan of result
and then will do the same with ELVIS:
#(AD, 54321, 1234)
8o that pretty soon it'll type for you
55555

This language is marvelously suited to data base management,
management information systems, interactive query systems,
and the broad spectrum of "business" programming.

For large-scale scientific number crunching, not so good.

With one exception: "infinite precision" arithmetic, when
people want things to hundreds of decimal places.

Chugga chugga.

This implicit call is the trick that allows people to create
their own languages very quickly. In not very long, you could
create your own commands — say ZAPP,MELVIN and some
more; and while at first it is more convenient to type in the
TRAC format

#(ZAPP, #(MELVIN))

it is very little trouble in TRAC Language to create new
syntaxes of your own like

ZAPP ! MELVIN

that are interpreted by the TRAC processor as meaning the
same thing.

2B. FILLING IN HOLES.
Another thing the CALL command in TRAC Language

does is fill in holes that exist in forms. Let us represent
a hole as follows:

[1]

Now suppose there is a TRAC form with a hole in it, like
this.

@OBD]W[]

Additional arguments in the call get plugged into holes in
the form. Examples:

call result
#(CL, WORD) HT
#(CL, WORD, O) HOT
#(WORD, A) HAT
#(WORD, 00) HOOT

Now, a form can have a number of different holes.
Let us denote these by

[1] (21 (3] [4] ...

Now suppose we have a form

WORD
[1]u[2]T(3]

which we might call numerous ways:

call result
#(WORD, W, I, E) WHITE

#(WORD, , 00, OWL) HOOTOWL
(Note that putting nothing between two
commas made nothing the argument.)

#(WORD, #(WORD, , 0)S, 0) HOTSHOT
Perhaps you can think of other examples.

This fill-in technique is obviously useful for program-
ming. If a form contains a program, its holes can be made
to accept varying numbers, form names, text strings,
other programs. Example: Suppose we want to create a
new TRAC command, ADD, that adds three numbers instead
of just two. Fair enough:

(DD}
(AD, [1], #(AD, [2),[3]))] and there you are.

This brings up another example of how nicely TRAC

Language works out. Suppose you have the following in
forms storage:

ZOWIE

#(Z1P,[1],(2
- 2D

#(ZAP, [1],[2
[A® ,(1], [2])
#(AD,[1],[2])
Try acting this one out with pencil and paper. Suppose you
type in

#(ZOWIE, 5,7)

It happens that the arguments 5 and 7 will be passed neatly

from ZOWIE to ZIP to ZAP to the final execution of the AD;
all through the smooth plugging of holes by the implicit call
and the Magie Scan procedure of the TRAC proceseor.

009000
ch Language is a so-called "list processing language" or
List Language." THis term has come to mean any language

“for twiddling data having arbitrary and changing form.

Two other prominent languages of this type are SNOBOL and
LISP (see p. 31).

List languages are traditionally freaky.

20

Teac LauJosJe ies

an interpretive language
(each step carried out directly
by the processor without conversion
to another form first);
an extensible language
(you can add your own commands
for your own purposes);
a list-processing language
.. (for handling complex and amorphous
& forms of data that don't fit in boxes

and arrays).
— It is one of the few such lan-
K guages that fits in little computers.

3. DRILLING THE HOLES

The holes (called by Mooers segment gaps) are created
by the SEGMENT STRING instruction.

#(SS, formname, whateverl, whatever2 ...)
where "formname" is the form you want to put holes in and
the whatevers are things you want to replace by holes.
Example: Suppose you have a form

INSULT

YOU ARE A CREEP]

You make this more general by means of the SEGMENT
STRING instruction:

#(SS, INSULT, CREEP)
resulting in

INSULT]
YOU ARE A []

which can be filled in at a more appropriate time.

Fuller example. Suppose we type into the TRAC
processor the following:

#(DS, THINGY, ONE FOR THE MONEY AND TWO FOR THE SHOW)

#(SS, THINGY, ONE, TWO,)
note space

We have now created a form THINGY and replaced parts of
it with segment gaps. Since each of the later arguments of
SEGMENT STRING specifies a differently numbered gap,
we will have gaps numbered [1], [2], and [3]. The gap [1]
will have replaced the word ONE, the gap [2] will have
replaced the word TWO, and a lot of gaps numbered [3] will
have replaced all the spaces in the form (since the fifth
argument of SS was a space). The resulting form is:

[A1[3]FOR[S] THE[3]MONE Y{3]AND[3][2][3]FOR[3 | THE[3]SHOW]

We can get it to print out interestingly by typing #(CL,
THINGY, RUN, HIDE) (since after the call, the plugged-in
form will still be in the forms storage.) This is printed:

RUNFORTHEMONE YANDHIDEFORTHESHOW

or perhaps, if we use a carriage return for the last
argument , we can get funny results. The call

;#(THINGY, NOT A FIG, THAT, [carriage return]

should result in

NOT A FIG
FOR

THE
MONEY
AND

THAT

FOR

THE

SHOW

In TRAC Language, every command %

is replaced by its result
as the program's execution proceeds.
This is ingenious, weird and highly effective.

{TIDISESTABLISHMEN

TEST COMMANDS IN TRAC LANGUAGE

There are test commands in TRAC Language, but like
everything else they work on strings of characters. Thus
they may work on numbers or text. Consider the EQ
command (test if equal):

#(EQ, firstthing, secondthing, ifso, ifnot)
where "firstthing'' and "'secondthing' are the strings being
compared, and ifso and ifnot are the alternatives. If first-
thing is the same as secondthing, then ifso is what the
TRAC processor does, and ifnot is forgotten. Example:

#(EQ, 3, #(SU, 5, 2), HOORAY, NUTS)

If it turns out that 3 is equal to #(SU, 5,2), which it is, then
all that would be left of the whole string would be

HOORAY
while otherwise the TRAC processor would produce NUTS.

To most computer people this looks completely inside-
out, with the thing to do next appearing at the center of the

DISK OPERATIONS

Now for the juicy disk operations. Storing things on
disk can occur as an ordinary TRAC command.

#(SB, name, form1, form2, form3 ...)

creates a place out somewhere on disk with the name you
give it, and puts in it the forms you've specified. Example:

#(SB, JUNK, TOM, DICK, HARRY)
and they're stored. If you want them later you say

#(FB, JUNK)
and they're back.

Because you can mix the disk operations in with every-
thing else so nicely, you can chain programs and changing
environments with great ease to travel smoothly among
different systems, circumstances, setups.

Here is a stupid program that scans all incoming text
for the word SHAZAM. If the word SHAZAM appears, it
clears out everything, calls a whole nother disk block, and
welcomes its new master. Otherwise nothing happens. If
you have access to a TRAC system (or really want to work

on lt),myou may be able to figure it out. (RESTART must
be in the workspace to begin.)

RESTAR !-{#a)s,TEMPJ#(Rs))#(ss,TEMP, #RPT)|
[RPT]

#(EQ, SHAZAM, #(TEST), (#(EVENT)))#(RPT)]
%TEMP, (#FRESTART)))

In this example, however, you may have noticed more
parentheses than you expected. Now for why.

#(DA)#(FB, MARVEL)#(PS, WELCOME O MASTER)|

PROTECTION AND ONE-SHOT

The last thing we'll talk about is the other two syntactic
layouts.

We've already told you about the main syntactic layout
of TRAC Language, which is

#()

It turns out that two more layouts are needed, which we may
call PROTECTION and ONE-SHOT. Protection is simply

()

which prevents the execution of anything between the

parentheses. The TRAC processor strips off these plain

parentheses and moves on, leaving behind what was in

them but not having executed it. (But it may come back.)

An obvious use is to put around a program you're designing:
#(DS, PROG, (#(AD, A, B)))

safe
stripped stripped

but other uses turn up after you've experimented a little.
The last TRAC command arrangement looks like this

##()

and you can put any command in it, except that its result
will only be carried one level

##(CL, ZOWIE, 3, 4)

results in (using the forms we defined earlier),

#(2IP, 3,4)
N/

which is allowed to survive as i8, because the moving finger
of the TRAC scanner does not re-scan the result.

It is left to the very curious to try to figure out why
this 18 needed.

wWh

er can be d
is replaced by

its result.
This may or may not

yield something

which is in turn
executable.

When nothing left is executable,
what's left

is printed out.

That's the TRAC language.

FAST ANSWERBACK IN TRAC LANGUAGE

TRAC Language can be used for fast answerback to
simple problems. Typing in long executable TRAC expres-
sions causes the result, if any, to be printed back out
immediately.

For naive users, however, the special advantage is in
how easily TRAC Language may be used to program fast
answerback environments of any kind.

A SERIOUS LANGUAGE; BUT BE WILLING
TO BELIEVE WHAT YOU SEE

TRAC Language is, besides being an easy language to
learn, very powerful for text and storage applications.

Conventional computer people don't rily believe
or like it.

For instance, as a consultant I once had programmed,
in TRAC Language, a system for a certain intricate form
of business application. It worked. It ran. Anybody could
be taught to use it in five minutes. The client was consider-
ing expanding it and installing a complete system. They
asked another consultant.

It couldn't be done in TRAC Language, said the other
consultant; that's some kind of a "university'' language.
End of project.

HOW TO GET IT

There have been, until recently, certain difficulties
about getting access to a TRAC processor. Over the years,
Mooers has worked with his own processors in Cambridge.
Experimenters here and there have tried their hands at
programming it, with little compatibility in their results.
Mooers has worked with several large corporations, who said
said they wanted to try processors to assess the value of the
the language, but those endeavors brought nothing out to
the public.

FINALLY, however, TRAC Language service is pub-
lically available, in a fastidiously accurate processor and
with Mooers' blessing, on Computility™timesharing service.
They run PDP-10 service in the Boston-to~Washington
area. (From elsewhere you have to pay long distance.)

The charge should run $12 to $15 per hour in business hours,
less elsewhen. But this depends to some extent on what
your program does, and is hence unpredictable. A licensed
TRAC Language processor may be obtained from Mooers

for your own favorite PDP-10. Processors for other com-
puters, including minis, are in the planning stage.

TRAC Language 18 now nicely documented in two new
books by Mooers, a beginner's manual and a standardization
book (see Bibliography).

Since Mooers operates a small business, and must
make a livelihood from it, he has adopted the standard
business techniques of service mark and copyright to
protect his interests. The service mark "TRAC" serves
to identify his product in the marketplace, and is an
assurance to the public that the product exactly meets the
published standards By law, the "TRAC' mark may not
be used on programs or products which do not come from
Rockford Research, Inc.

Following IBM, he is using copyright to protect his
documentation and programs from copying and adaptation
without authority.

Mooers also stands ready to accommodate academic
students and experimenters who wish to try their hands at
programming a TRAC processor. An experimenter's
license for use of the copyright material may be obtained
for a few dollars, provided you do not intend to use the
resulting programs commercially.

For information of all kinds, including lists of latest
literature and application notes, contact:

Calvin N. Mooers

Rockford Research, Inc.

140-1/2 Mount Auburn Street

Cambridge, Mass. 02138 Tel. (617)876-6776

TRAC® PRIMITIVES®

OUTPUT.
PS, string
: PRINT STRING: prints out the second argument.
INPUT.
RS

READ STRING: this command is replaced by a string of
characters typed in by the user, whose end is signalled by a
changeable "meta' character.
CM, arg2
CHANGE META: first character of second argument becomes
RC new meta character. May be carriage-return code.
READ CHARACTER: this command is replaced by the next
character the user types in. Permits highly responsive inter-
active systems.

DISK COMMANDS.
SB, blockname, forml, form2 ...
STORE BLOCK: under block name supplied, stores forms listed.
FB, blockname
FETCH BLOCK: contents ‘of named block are quietly brought in
to forms storage from disk.

MAIN FORM COMMANDS.

DS, formname, contents
DEFINE STRING. Discussed in text.

CL, formname, plugl, plug2, plug3 ...
CALL: brings form from forms storage to working program.
Plugl is fitted into every hole (segment gap) numbered 1,
plug2 into every hole numbered 2, and so on.

S8, formname, punchoutl, punchout2 . ..
SEGMENT STRING: this command replaces every occurrence
of punchoutl with a hole (segment gap) numbered 1, and so on.

INTERNAL FORM COMMANDS.
(All of these use a little pointer, or form pointer, that marks a place
in the form. If there is no form remaining after the pointer, these
instructions act on their last argument, which is otherwise ignored.)
IN, formname, string, default
Looks for specified string IN the form, starting at pointer. If
not found, pointer unmoved. (NOTE: string search can also be
done nicely with the SS command.)
CC, formname, default
CALL CHARACTER: brings up next character in form, moves
pointer to after it.
CN, formname, no. of characters, default
CALL N: brings up next N characters, moves pointer to after
them.
CS, formname, default
CALL SEGMENT: brings up everything to next segment gap,
moves pointer to it.
CR, formname
CALL RESTORE: moves pointer back to beginning of form.

MANAGING FORMS STORAGE
LN, divider
LIST NAMES: replaced by all form names in forms storage,
with any divider between them. Divider is optional.
DD, namel, name2 ...
DELETE DEFINITION: destroys named forms in forms storage.
DA
DELETE ALL: gets rid of all forms in forms storage.

TEST COMMANDS.
EQ, firstthing, secondthing, ifso, ifnot
Tests if EQual: if firstthing is same as secondthing, what's left
is ifso; if not equal, what's left is ifnot.
GR, firstthing, secondthing, ifso, ifnot
Tests whether firstthing is numerically GReater than second-
thing. I so, what's left is ifso; if not, what's left is ifnot.

OH YEAH, ARITHMETIC.
(All these are handled in decimal arithmetic, a character at a time,
and defined only for two integers. Everything else you write your-
self as a shorty program.)

AD
1%1(;_, mentioned in text.
DI

BOOLEAN COMMANDS.

(Several exist in the language, but could not possibly be understood
from this writeup.)

* Description of TRAC language primitives adapted by permission from
"TRAC, A Procedure-Describing Language for the Reactive Typewriter, "
copyright © 1966 by Rockford Research, Inc.

BIBLIOGRAPHY

Calvin N. Mooers, The Beginner's Manual for TRAC® Language,
300 pages, $10.00, from Rockford Research, Inc.
(See "Where to Get It.")

Calvin N. Mooers, Definition and Standard for TRAC® T-64
Language, 86 pages, $5.00, from Rockford Research, Inc.

Calvin N. Mooers, "TRAC, A Procedure-Describing Language
for the Reactive Typewriter, " Communications of the ACM,
v.9, n.3, pp.215-219 (March 1966). Historic paper, out of
print. This paper is copyrighted, and the copyright is owned
by Rockford Research, Inc., through legal assignment from
the Association for Comput ing Machinery, Inc.

And for those who want to understand the depth of the standardiza-~
tion problem, Mooers offers freebie reprints of:

Calvin N. Mooers, "Accommodating Standards and Identification
of Programming Languages, "' Communications of the ACM,
v.11, n. 8, pp.574-576 (August 1968).

21

22

STARK & CLEVER_

Some people call it a "scientific" language.
Some people call it a "mathematical" language.
Some people are most struck by its use for inter-
active systems, so to them it's an interactive
language. But most of us just think of it as THE
LANGUAGE WITH ALL THE FUNNY SYMBOLS,
and here they are:

*punociwte | A\>0; VA
"Tezg2=>)viL_ (4TH1~0?L -
1238465719.BF[UN«ITOQD+
PRVCAZxWYEMO/XL ,SJGKH

Enthusiasts see it as a language of incon-
ceivable power with extraordinary uses. Cynics
remark that it has all kinds of extraordinary
powers for inconceivable uses-- that is, a weird
elegance, much of which has no use at all, and
some of which gets in the way.

This is probably wrong. APL is a terrific
and beautiful triumph of the mind, and a very
useful programming language. It is not for every-
body, but neither is chess. It is for bright chil-
dren, mathematicians, and companies who want
to build interactive systems but feel they should
stick with IBM.

APL is one of IBM's better products, probably
because it is principally the creation of one man,
Kenneth Iverson. It is mainly run on 360 and
370 computers, though implementations exist
for the DEC PDP-10 and perhaps other popular
machines. (Actually iverson designed the lan-
guage at Harvard and programmed it on his own
initiative after moving to IBM; added to the pro-

duct line by popular demand, it was not a planned
product and might in fact be a hazard to the firm,

should it catch on big.)

APL is a language of arrays, with a fascinat-
ing notation. The array system and the notation
can be explained separately, and so they will.

Let's just say the language works on things
modified successively by operators. Their order
and result is based upon those fiendish chicken
scratches, Iverson notation.

THAT NIFTY NOTATION

The first thing to understand about APL
is the fiendishly clever system of notation that
Iverson has worked out. This system (sometimes
called Iverson notation) allows extremely complex
relations and computer-type events to be expressed
simply, densely and consistently.

(Of course, you can't even type it without
an IBM Selectric typewriter and an APL ball.
Note the product-line tie-in.)

The notation is based on operators modifying
things. Let's use alphabetic symbols for things
and play with pictures for a minute.

MARCELLOS <D ‘O # AEShE

—
Csesar was éabbed.

The sun showe 25

{\I\arw”vt saw Thal--

In considering the successive meanings of this
rebus we are proceeding from right to left, as
you note, and each new symbol adds meaning.
This is the general idea.

You will note, in this example, the curious
arrangement whereby you can have several
pictures, or operators, in a row. This is one
of the fun features of the language.

TWO-SIDED OPERATORS

In old-fashioned notations, such as ordinary
arithmetic, we are used to the idea of an operator
between two things. Like

2+ 2

or in algebra,
xKy

These, too, occur in APL; indeed, APL
can also nest two-sided operators-- that is, put
them one inside the other, like the leaves of
a cabbage. Old-fashioned notations nest with
parentheses. But APL nests leftward. It works

according to a very simple right-to-left rule.

SKyXg

the result of this

is operated on by
the next thing and operator,
\\ yielding another result

which is in turn operated on by

the next thing and operator,
yielding final result.

ONE-SIDED OPERATORS

We are also used to some one-sided operators
in our previous life. For instance:

-1
means the negation of 1;

- (-1
means negating that.

APL can also nest one-sided operators.

S Z B3 ok

first operator is

result is worked on

by second operator;

result is worked on
by third operator;

result is worked on by
fourth operator,
yielding final resuilt.

SAME SYMBOLS WORK BOTH WAYS

Now, one of the fascinating kickers of APL
is the fact that most of the symbols have both a
one-sided meaning and a two-sided meaning; but,
thank goodness, they can be easily kept straight.

Here is a concrete example: the symbol
or "ceiling." Used one-sided, the result of
operator [applied to something numerical is the
integer just above the number it is applied to:
[7.2is 8. Used two-sided, the result is which-
ever of the numbers it's between is larger:
10['6 is 10. (There is also L , floor, which you
can surely figure out.)

Now, when you string things out into a long
APL expression, Iverson's notation determines
exactly when an operator is one-sided and when
it is two-sided:

As you go from right to left,

another thing? opP THING
another op? «—_ @

you generally start with a thing on the right. Then
comes an operator. If the next symbol is another
thing, then the operator is to be treated as a two-
sided operator (because it's between two things).
If the object beyond the first operator is another
operator, however, that means APL is supposed to
stop and carry out the first operator on a one-sided
basis. Example:

A - B

-~y

thing,
op,
thing. Conclusion:
It's two-sided.
Interpretation:
"subtract B from A."

A +-B

thing,
op,
op—-

stop.. Conclusion:
The first operator
is one-sided.
Interpretation:

"negate B."

Then take next symbol.

A WEIRD EXAMPLE, To HELP WITH THE NeTATION,

Just for kicks, let us make up a notation
having nothing to do with computers, using these
Iverson principles:

1 If an operator or symbol is between two

names of things, carry it out two-sidedly.
If not, carry it out one-sidedly.
2) Go from right to left.
The best simple example I can think of involves
file cards on the table (named A, B, C...) and
operators looking like this:
0) 45) 90) 180) 45) 90¥ 180)

to which we may assign the following meanings:

ONE-SIDED: ROTATION OPERATORS

0 A do nothing to A

45) A rotate A clockwise 45°

90) A rotate A clockwise 90°
ete.

TWO-SIDED: STAPLING OPERATORS

B 45) A staple A (thing named on the right)
to B (thing named on the left)
at a position 45° clockwise from
middle of B's centerline.

And equivalently for other angles.

Now, using these rules, and letting our things
be any file cards that are handy, here are some results:

A0 B ET ' ’

A9) B ij] OQS\'

A 90) 90) B l] on
L] &ﬂ@sto‘*‘}
[Oke’ o5 \% ¢

90) A 90) B

455 A 90) B o~
T @ e\

455 A 90) 90) B~
%)
Boyasya Y
A —
<]
A

C 45) B 0) 90}

It's hard to believe, but there you are. This
notation seems adequate to make a whole lot of
different stapled patterns.

Exercise! Use this nutty file card notation
to program the making of funny patterns. Practice
with a friend and see if you can communicate
patterns through these programs, one person
uncomprehendingly carrying out the other's
program and being surprised.

The point of all this has been to show the
powerful but somewhat startling way that brief
scribbles in notations of this type can have all sorts
of results.

Here is another example showing how we chug
along the row of symbols and take it apart. Again,
the alphabetical entities represent things.

/
b EY A
N~
first operation (one-sided)

second operation (two-sided)

Try dividing up these examples:

(g“_% O ROMEO

ELEANOR <@ saM () susie

One more thing needs to be noted. Not only
can we work out the sequences of operations, from
right to left, between the symbols; the computer can

course essential .

INSIDE

The truth of the matter is that APL in the com-
puter is a continuing succession of things being
operated on and replaced in the work area.

first thing

.. UG ﬁ@

thing which results
from operator @
done on YARGH

thing that results from operation
done to that by UG

and so on.

What is effectively happening is that the APL
processor is holding what it's working on in a
holding area. The way it carries out the scan of
the APL language, there only has to be one thing
in there at a time.

APL procescor

; (ree Rlle- pe L«lwi

Supp we have a simple user program,

Y+-12

Starting at the right of this user program, the
main APL program puts Z into the work area. That's
the first thing. Then, stepping left in the user
program, the APL processo? follows the rules and
discovers that the next operation makes it

-2

- which happens to mean, "the negation of Z." So it
carries this out on Z and replaces Z with the result,
-Z. Then, continuing to scan leftward, the APL
processor continues to replace what was in the work
_ area with the result of each operation in the suc-

. cessive lines of the user prog , till the prog
is completed.

APL Processor
(a h} troavw)

vser r'oaril\ m APL
Y+-7

holdtna area

:) TSY A

H A B otk a0

e e

SOME APL OPERATORS

It would be insane to enumerate them all,
but here is a sampling of APL's operators. They're
all on the pocket cards (see Bibliography).

For old times' sake, here are our friends:
(And a cousin thrown in for symmetry.)

+A plain A
(whatever A should happen to be)
A+B Aplus B
(whatever A should happen to B,
heh heh)
-B negation of B
A-B A minus B
xB the sign of B
(expressed as -1,0 or 1)
AxB A times B

And here are some groovies:

1A factorial A
(1x2x3 ... up to A)

A'B the number of possible
combinations you can get from B,
taken A at a time

?A a random integer
taken from array A

A?B take some integers at random

from B. How many? A.

But, of course, APL goes on and on. There
are dozens more (including symbols made of more
than one weird APL symbol, printed on top of each
other to make a new symbol) .

Consider the incredible power. Single APL
symbols give you logarithms, trigonometric
functions, matrix functions, number system conver-
sions, logs to any arbitrary base, and powers of e
(a mysteri ber of which engi are fond) .

Other weird things. You can apply an oper-
ation to all the elements of an array using the /
operator: +/A is the sum of everything in A, x/A
is the combined product of everything in A. And
soon. Whew.

As you may suspect, APL programs can be
incredibly concise. (This is a frequently-heard
criticism: that the conciseness makes them hard
to understand and hard to change.)

MAKE YOUR OWN

Finally and gloriously, the user may define
his own functions, either one-sided or two-sided,
with alphabetical names. For instance, you can
create your own one-sided operator ZONK, as in

ZONK B
and even a two-sided ZONK,
A ZONK B
which can then go right in there with the big boys:
A zoNk 1) B

Don't ask what it means, but it's allowed.

STOP THE PRESSES|

An APL machine, a mini that does nothing but APL,

23

APL THINGS, TO GO WITH YOUR OPERATORS

As we said, APL has operators (already
explained) and things. The things can be plain
numbers, or Arrays (already mentioned under
BASIC). Think of them as rows, boxes and
superboxes of numbers:

246810 a one-dimensional thing
2 4

35 a two-dimensional thing
28

68 a three-dimensional thing,

seen from the front. Maybe
we better look at the levels

side by side:
13 2 4
57 6 8

APL can have Things with four dimensions, five and
so on, but we won't trouble you here with pictures.

Oh yes, and finally a no-dimensional thing.
Example:

75.2

1t is called no-dimensional because there is only
one of it, so it is not a row or a box.

Seriously, these are arrays, and Iverson's
APL works them over, turns them inside out, twists
and zaps through to whatever the answers are.

As in BASIC and TRAC, the arrays of APL
are really stored in the computer's core memory,
associated with the name you give them. The
arrays may be of all different sizes and dimen-
sionality:

2.5 7.1 89.006

"Ljers| arrey”
g FZ:«. beloa)

E

(empty array, but a name is
saved for it.)

o

(a zero-dimensional array,
since it's only one number.)

Each array is really a series of memory locations
with its label and boxing information-- dimensions
and lengths-- stored separately. One very nice
thing about APL is that arrays can keep changing
their sizes freely, and this need be of no concern
to the APL programmer. (The arrays can also be
boxed and reboxed in different dimensions just by
changing the boxing information-- with an operator
called "ravel.")

is now available from a Canadian firm for the mere pittance of

THREE THOUSAND FIVE HUNDRED DOLLARS,

rereux L.‘ mUh L
a3+
mactwe foran) g
(macte forg 30 veplaced by cesslf o
—3 RERYA

the price of many a mere terminal. This according to
Computerworld, 10 Oct 73.

Run, don't walk, to Micro Computer Machines, Inc.,
4L ing Sq., Willowdale, M2J 1T1, O io, Canada. That
$3500 gets you a 16K memory, the APL program, keyboard and
numerical keyboard, and plasma display. Cassette (whlch—
apparently stores and retrieves arrays by name when called
by the program) is $1500 extra. RUNS ON BATTERIES. Sorry,
no green stamps. (Note that the APL processor takes up most
of the 16K, but you can get more.)

* * * L L L * - L * L

The rumor that IBM has APL on a chip, inside a Selectric
-~ which therefore does all these things with no external
connection to any (external) computer-- remains unsubstantiated.
The rumor has been around for some time.

But it's quite possible.

The thing is, it would probably destroy IBM's entire
product line-- and pricing edifice.

Few people know all of APL, or would want to.
The operations are diverse and obscure,
and many of them are comprehensible only
to people in mathematical fields.

However, if you know a dozen or so you can
really get off the ground.

As in BASIC, you can use subscripts to
get at specific elements in arrays. Referring to
the examples above, if you type

JOE [z]
you get back on your typewriter its value

7.1

and if you type

NORA [_24]

you get back
d

There are basically four kinds of information
used by APL, and all of them can be put in arrays.
Three of these types are numerical, and arrays of
them look like this on paper:

Integer arrays: 2 4 -6 8 10 2048

Scalar arrays: 2.5 -3.1416 0.001 2795333.1
(a scalar is something that can be
measured on a ruler-like scale,
where there are always points
in betweeen.)

Logicalarrays: 1 0 0 0 1 0 1
(these arrays of ones and zeroes are
called "logical" for a variety of
reasons; in this case we could call them
"logical" simply because they are used

for picking and choosing and deciding.)

These three numerical types of information may be
freely intermixed in your arrays. One more type,
however, is allowed. It's hard to figure out from
the manuals, but evidently this type can't be
mixed in with the others too freely. We refer to
the alphabetical or "literal" array, as in

The quick brown fox jumped over the lazy dog.

Now, pre-written APL programs can print out
literal information, and accept it from a user at

a terminal, which is why APL is good for the
creation of systems for naive users (see "Good-Guy
Systems," p. 17).

Literal vectors may be picked apart,
rearranged and assembled by all the regular APL
operators. That's how we twiddle our text.

CRASHING THE SYMBOLS TOGETHER

Now that we know about the operators and
the arrays, what does APL do?

It works on arrays, singly and in pairs,
according to those funny-looking symbols, as the
APL processor scans right-to-left.

IVERSON'S TAFFY-PULL

A number of basic APL operators help you
stretch, squish and pull apart your arrays.
Consider the lowly comma (called "ravel," which
means the same as "unravel") .

A forget A's old dimensions,
make it one-dimensional.
A,B make A and B one long
one-dimensional array .

Here is how we make things appear and disappear.
("Compression.™)

A/B A must be a one-dimensional

array of ones and zeroes.
The result is those elements
of B selected by the ones.
Example:

101/cat
results in

ct

The opposite slash has the opposite effect,
inserting extra null elements where there
are zeroes: \
1101\359
results in
350 9

Here's another selector. This operator
takes the first or last few of A, depending on size
and sign of B:

Bta
and Bl A is the opposite.

If you want to know the relative positions of
numbers of different sizes in a one-dimensional
array,

f (name of array)
will tell you. It gives you the itions, in order
of size, of the numbers. And g does it for

descending order.

These are just samples. The list goes on
and on.

SAMPLE PROGRAMS

Here is an APL program that types out
backwards what you type in. First look at the
program, then the explanation below.

YV rev
[r<0
2] O« ¢
v

Explanation. The down-pointing triangles
("dels") symbolize the beginning and end of a
program, which in this case we have called REV.
On Line 1, the "Quote-Quad" symbol (on the right)
causes the APL processor to wait for alphabetical
input. Presumably the user will type something.
The user's line of input is stuffed into thing or
array I. The user's carriage return tells the APL
processor he has finished, so it continues in the
program. On the second line, APL takes array I
and does a one-sided @ to it, which happens to
mean turning it around. Left-arrow into the
quote-quad symbol means print it out.

B of APL's) ess, indeed, this
magnificent program can all go on one line:

NV Rev
[J0e$I-M
\Y

First the input goes into I, then the processor does
a P I (reversal) and puts it out.

And here is our old friend, the fortune-cookie
prisoner.

INF

%' [l] D 4— 'HELP, I AM CAUGHT IN A LOOP'
I: [z] - 1

\Y

On line 1 the program prints out whatever's in
quotes. And line 2 causes it to go back and do
line 1 again. Forever.

THE TESTAND-BRANCH n{ ARL

It should be mentioned at this point that
branching tests are d d in APL programs
by specifying conditions which are either true or
false, and APL's answer is 1 if true, 0 if false.
(This is another thing these logical arrays are for.)

Example:

3>2

This operation leaves the number 1, because 3
is greater than 2. So you could branch on a test
with something like

—7x AD>B

which branches to line 7 in the program if A is
greater than B, and is ignored (as an unexecutable
branch to line zero) if B is greater than A.

Some love it, some hate it.

THE APL ENVIRONMENT

Aside from the APL language itself, to
program in APL you must learn a lot of "system"
commands, alphabetical commands by which to tell
the APL processor what you want to do in general
-~ what to store, what to bring forth from storage,
and so on.

Ordinarily you have a workspace, a collec-
tion of programs and data which you may summon
by name. When it comes-- that is, when the com-
puter has fetched this material and announced on
your terminal that it is ready-- you can run the
programs and use the data in your workspace.
You can also have passwords for your different
workspaces, so others at other terminals cannot
tamper with your stuff.

This is not the place to go into the system
commands. If you're serious, you can learn them
from the book or the APL salesman.

There are many, many different error
messages that the APL processor can send you,
depending on the ci . It is possi
to make many, many mistakes in APL, and
there are error messages for all of them. All
of them, that is, that look to the computer like
errors; if you do something permissible that's
not what you intended, the computer will not
tell you.

But it is a terminal language, designed to
help people muddle through.

Good luck!

INERSON's
STELANGE AND WoNDERFUL
CHoltes of symgoLs

Iverson's notation is built around the
curious principle of having the same symbols mean
two things depending on . (Good
knows he uses enough different symbols; doubling
up at least means he doesn't need any more.) It
turns out that this notation represents a consistent
series of operations in astounding combinations.

The overall APL language, really, is the
carrying through of this notation to create an im-
mensely powerful programming language. The
impetus obviously came from the desire to make
various intricate mathematical operations easy to
command. The result, however, is a programming
language with great power for simpler tasks as well.

Now, the consequences of this overall idea
were not determined by God. They were worked
out by Iverson, very thoughtfully, so as to come
out symmetrical-looking and easy to remember.
What we see is the clever exploitation of apparent
but inexact symmetries in the ideas. Often APL's
one-sided and two-sided pairs of operators are
more suggestively similar than really the same
thing.

When Iverson assigns one-sided and two-
sided meanings to a symbol, often the two meanings
may look natural only because Iverson is such an
artist. Example:

two-sided one-sided
AX B xB
A times B the signof B

This makes sense. To argue that it is inherent in
"taking away half the idea of multiplication,"
however, is dubious.

Some symmetries Iverson has managed to
come up with are truly remarkable. The arrow,
for instance. The left arrow:

A«B
Assignment statement: B (which
may have been computed during
the leftward scan) is assigned
the name of A;

and the right arrow:

~—B
The jump statement, where B
(which may have been com-
puted during the leftward scan)
is a statement number; the
program now goes and executes
that line.

This symmetry is mystically interesting because
the assignment and jump statements are so basic
to programming.

Or consider this:

Dex

print X.

X<0

take input from the user and
stuff it into X.

Another weird example: supposedly the
conditional branch

> B/A

(one way of writing, "jump to A if B is true")

is a special case of the "compression" operator.
(Berry 360 primer, 72 and 165.) This is very
hard to understand, although it seems clear while
you're reading it.

On the other hand, there is every indication
that APL is so deep you keep finding new truths
in it. (Like the above paragraph.) The whole
thing is just unbelievable. Hooray for all that.

APL FOR USER-LEVEL SYSTEMS
(See "Good-Guy Systems," p. I3)

Because APL can solicit text input from a user and analyze it,
the language is powerful for the creation of user-level environments
and systems-- with the drawback, universal to all IBM terminals,
that input lines must end with specific characters. In other words,
it can't be as fully interactive as computer languages that use ASCII
terminals.

Needless to say, the mathematical elegance and power of the
ystem is letely y for most user-level systems. But
it's nice to know it's there.

APL is probably best for systems with well-defined and seg-
regated files-- "array-type problems," like payroll, accounts and
soon. It is not suited for much larger amorphous and evolutionary
stuff, the way list languages like TRAC are. Don't use APL if
you're going to store large evolving texts or huge brokerage data
bases, like what tankers are free in the Mediterranean.

The quickest payoff may lie in using APL to replace business
forms and hasten the flow of information through a company. A
salesman on the road with an APL terminal, for instance, can at once
enter his orders in the p from the 's office, checking
inventory directly. If the program is up.

ROUND (an obscure and donnish joke)

, the Greek letter "rho," is an APL operator
for testing the size of arrays. When used
in the one-sided format, it gives the sizes
of each dimension of an array.

Thus i 9
A, when A is []
w22/ >4
And now
'YOUR BOAT'
f equals 9, since there are 9 letters
in the array 'YOUR BOAT';
”Q'YOUR BOAT'
is 1,
since p 91is 1, and

'YOUR BOAT'
is likewise 1.

N N\

This language is superb for "scientific” programming,
i ing heavy crunching and exper-
imentation with different formulas on small
data bases. (Big data bases are a problem.)

1t is also not bad for a variety of simple business
applications, such as payroll, accounting,
billing and inventory .

FAST ANSWERBACK IN APL

If you want quick answers, the APL terminal
just gives you the result of whatever you type in.
For instance,

3Ix4
will cause it to print out
12

and the same goes for far less comprehensible
stuff like

72 + ¢ ? 1 2 3 4 (carriage return)
(S
typed-in array
PROGRAMS IN APL

But the-larger function of APL is to create
programs that can be stored, named and carried
out at a later time.

For this, APL allows you to define programs,
@ line at a time. The programs remain stored in the
system as long as you want. Using the "Del"
operator (), you tell the system that you want to
put in a program. Del causes the terminal to help
you along in various ways.

A nice feature is that you can lock your APL
programs, that is, make them inaccessible and
unreadable by others, whether they are
programmers or not. In this case you define a
program starting with the mystical sign del-tilde
(&®) instead of del (/), and invoke the names
of dark spirits.

APL, like BASIC, can be classed as an "algebraic"
language-- but this one is built to please
real mathematicians, with high-level stuff
only they know about, like Inner and Outer

Products.
Paradoxically, this makes APL terrific for teaching
these deeper tical pts, helpi

you see the consequences of operations and
the underlying structure of mathematical
things. Matrix bra, for instance, can be
visualized a lot better by working up to it
with lesser concepts (like vectors and
inner prod) d on an APL

It would be really swell if someone would put to-
gether a tour-guide book of higher mathem-
atics at the grade/highschool level for people
with access to APL.

Interestingly, Alfred Bork (U. of Cal. at Irvine)
is taking a similar approach to teaching
physics, using APL as a fundamental
language in his physics courses.

SNEAKY REPEATER STATEMENT IN APL?

One of the APL operators, "iota" (1),
seems to make its own program loop within a line.
When used one-sided, it furnishes a series of

ling b up to the ber it's operating
on. This until the last one is reached.

You type: 3x 17
APL replies: 3 6 9 ‘12 15 18 21

In other words, one-sided fota Iooks to be
doing its own little loop, increasing its starting
number by 1, until it gets to the value on its right,
and chugs on down the line with each.

Very sneaky way of doing a loop.

However! It isn't really looping, exactly.
What the iota does is create a one-dimensional
array, a row of integers from 1 up to the number
on its right. This result is what then moves on
leftward.

WHERE TO GET IT

IBM doesn't sell APL services. Their time-
sharing APL is available, however, from various
suppliers. Of course, that means you probably
have to have an IBM-type terminal, unless you find
a service that offers APL to the other kind-- an
addition which seems to be becoming fashionable.

Usual charge is about ten bucks an hour
connect charge, plus processing, which depends
on what you're doing. It can easily run over $15
an hour, though, and more for heavy crunching
or printout, so watch it.

The salesman will come to your house or
office, verify that your terminal will work (or
tell you where you can rent one), patiently show
you how to sign on, teach you the language for
maybe an hour if he's a nice guy, and proffer
the contract.

~>» APL services are probably safer to sign
onto, in terms of risked expenses, than most other
time-sharing systems. (Though of course all
time-sharing involves financial risk.) Because
the system is restricted only and exactly to APL,
you're not paying for capabilities you won't be
using, or for massive disk storage (which you're
not allowed in most APL services anyway), or
for acres of core memory you might be tempted
to fill.

~» In other words, APL is a comparatively
straight proposition, and highly recommended if
you have a lot of math or statistics you'd like to do
on a fairly small number of cases. Also good for
a variety of other things, though, including fun.

Different vendors offer interesting variations
on IBM's basic APL \ 360 package, as noted below.
In other words, they ‘ompete with each other in
part by adding features to the basic APL\360 pro-
gram, vying for your business. Each of the ven-
dors listed also offers various programs in APL
you can use interactively at an IBM-type ‘terminal,
in many cases using an ordinary typeball and not
seeing the funny characters; though how clear and
easy these programs are will vary.

And remember, of course, that you can do
your own thing, or have others do it for you,
using APL.

APL is also available on the PDP-10, and
presumably other non-IBM big machines.

THE VENDORS

Scientific Time-Sharing Corporation (7316 Wiscon-
sin Ave., Bethesda MD 20014) calls its
version APL*PLUS. They'll send you a
nice pocket card summarizing the commands.

APL*PLUS offers over twentyfive
concentrators around the country, per-
mitting local-call services in such metro-
politan centers as Kalamazoo and Rochester.
(Firms with offices in both cities, please
note.)

They also have an "AUTOSTART"
feature which permits the chaining of pro-
grams into grand complexes, so you don't
have to call them all individually.

APL*PLUS charges the following for
storage, if you can dig it: $10 PER MILLION
BYTE-DAYS. (A byte is usually one
character.) The census is probably taken
once a day.

This firm also services ASCII ter-
minals, which some people will consider
to be a big help. That means you can have
interactive users of APL programs at ASCII
terminals, and that you can also program
from the few APL terminals that aren't of
the IBM type.

Time Sharing Resources, Inc. (777 Northern Blvd.,
Great Neck, N.Y. 11022) offers a lot of APL
service, including text systems and various
kinds of file handling, under the name
TOTAL/APL.

Among the interesting features
Time Sharing Resources, Inc. have added
is an EXECUTE command, which allows an
APL string entered at the keyboard in
user on-line mode to be executed as straight
APL. This is heavy.

Perhaps the most versatile-sounding APL service
right now is offered by, of all people, a
subsidiary of the American Can Company.
American Information Services (American
Lane, Greenwich CT 06830) calls their
version VIRTUAL APL, meaning that it can
run in "virtual memory"-- a popular
misnomer for virtually unlimited memory--
and consequently the programmer is hardly
subject to space limitations at all. Moreover,
files on the AIS system are compatible with
other IBM languages, so you can use APL to
try things out quickly and then convert to
Fortran, Cobol or whatever. (Or, conversely,
a company may go from those other languages
to APL without changing the way their files
are stored on this service.) APL may indeed
intermix with these other languages, how
is unclear.

And the prices look especially good:
$8.75 an hour connect, $15 a month minimum
(actually their minimum disk space rental
== 1 IBM cylinder-- so for that amount you
get a lot of storage). But remember there
are still core charges, and $1 per thousand

h ters printed or ferred to storage.

In the West, a big vendor is Proprietary Computer
Systems, Inc., Van Nuys, California.

TERMINALS

For an APL terminal, you might just want a
2741 from IBM (about a hundred a month, but on a
year contract) .

Or see the list under "Terminals" (p.\u\) »
or ask your friendly APL company when you sign up.

Two more APL terminals, mentioned here
instead of under "Terminals" for no special reason:

Tektronix offers one of its greenie graphics
terminals (see flip side) for APL (the model 4013).
This permits APL to draw pictures for you. It
seems to be an ASCII-type unit.

Computer Devices, Inc. supposedly makes an
an APL terminal using the nice NCR thermal printer,
which is much faster and quieter than a mechanical
typewriter. Spookier, though. And the special
paper costs a Iot of money .

BIBLIOGRAPHY

Iverson has a formal book. Ignore it unless you're
a mathematician: Kenneth E. Iverson,

A Proj ming Language. Wiley, 1962.

Paul Berry, APL \ 360 Primer, Student Text.
Available "through IBM branch offices," or
IBM Technical Publications Department,
112 East Post Road, White Plains, NY 10601.
No IBM publication number on it, which is
sort of odd. 1969.

—»This is one of the most beautifully
written, simple, clear computer manuals
that is to be found. Such a statement may
astound readers who have seen other IBM
manuals, but it's true.

A.D. Falkoff and K.E. Iverson, APL \360 Users'
Manual. Also available from IBM, no
publication number.

POCKET CARDS (giving very compressed sum-
maries) are available from both:

Scientific Time Sharing Corp.

(see WHERE TO GET IT)

Technical Publications Dept., IBM,

112 East Post Road, White
Plains, N.Y. 10601.

Ask for APL Reference
Data card $210-0007-0. May
cost a quarter or something.

Paul Berry, APL\1130 Primer. Adapted from 360
manual. Same pub. But for version of APL
that runs on the IBM 1130 minicomputer.

Roy A. Sykes, "The Use and Misuse of APL."
$2 from Scientific Time-Sharing Corp.,
7316 Wisconsin Ave., Bethesda MD 20014.

A joker for you math freaks. Trenchard More,
Jr., "Axioms and Theorems for a Theory of
Arrays." IBM Journal of Resch. & Devt.,
March 73, 135-157. This is a high-level
thing, a sort of massive set theory of APL,
intended to make APL operators apply to
arrays of arrays, and lead ultimately to the
provability of programs.

"Get on Target with APL." A suggestive circular
sales thingy. IBM G520-2439-0.

IBM has a videotaped course in APL by A.J. Rose.
(Done 1968.)

wamt you really need to get started is Berry's
Primer, Falkoff and Iverson's manual, and a pocket
card. Plus of course the system and the friend to
tutor you.

Power and simplicity do not often go together.

APL is an extremely powerful language for
mathematics, physics, statistics, simulation
and so on.

However, it is not exactly simple. It's not easy
to debug. Indeed, APL programs are hard
to understand because of their density.

And the APL language does not fit very well on
minis.

CeT

APL is not just a programming language.
It is also used by some people as a definition or
description language, that is, a form of notation
for stating how things work (laws of nature,
algebraic systems, computers or whatever).

For instance, when IBM's 360 computer
came out, Iverson and his friends did a very
high-class article des¢ribing formally in APL
just what 360s do (the machine's architecture).
But of course this was even less comprehensible
than the 360 programming manual.

Falkoff, A.D., K.E. Iverson and E.H.
Sussenguth, "A Formal Description
of System/360," IBM Systems Journal,
v.3no. 3, 1964.

The formal description in APL.

IBM System/360 Operating System: Assembler
Language. Document Number

C28-6514-X (where X is a number
signifying the latest edition). IBM
Technical Publications, White Plains
New York.

The Manual.

26

DATK STRUCTURE

INFORMATION SETUPS

One of the commonest and most destructive
myths about computers is the idea that they "only
deal with numbers." This is TOTALLY FALSE.

Not only is it a ghastly misunderstanding, but it is
often an i tional misrep , and as such,
not only is it a misrepresentation but it is a damned
lie, and anyone who tells it is using "mathematics"
as a wet noodle to beat the reader with.

Computers deal with symbols and patterns.

Computers deal with symbols of any kind--
letters, musical notes, Chinese ideograms, arrows,
ice cream flavors, and of course numbers. (Num-
bers come also in various flavors, simple and
baroque. See chocolate box,” p, 24

Data structure means any symbols and pat-
terns set up for use in a computer. It means what
things are being taken into account by a computer
program, and how these things are set up-- what
symbols and arrangements are used to represent
them.

The problem, obviously, is Representing
The Information You Want Just The Way You Want It,
in all its true complexities.

(This is often forbiddingly stated as "making
a mathematical model"-- but that's usually in the
rhetorical, far-fetched and astral sense in which
all relations are "mathematical" and letters of the
alphabet are considered to be a special distorted
kind of number.)

Now it happens that there are many kinds of
data structure, and they are interchangeable in
intricate ways.

The same data, with all its relationships and
intricacies, can be set up in a vast variety of ar-
rangements and styles which are inside-out and
upside-down versions of each other. The same
thing (say, the serial number, 24965, of an auto-
mobile) may be represented in one data structure
by a set of symbols (such as the decimal digits
2, 4, 9, 6, 5 in that order), and in another data
structure by the position of something else (such
as the 24965th name in a list of automobile owners

regi d with the facturer).

Furthermore, many different forms of data
may be d or twisted together in the same
overall setup.

The data structure chosen goes a long way
in imposing techniques and styles of operation on
the program.

On the other hand, the computer language
you use has a considerable effect upon the data
structures you may choose. Languages tend to
impose styles of handling information. The deci-
sion to program a given problem in a specific lan-
guage, such as BASIC or COBOL or APL or TRAC
Language, either locks you into specific types of
data structure, or exerts considerable pressure to
do it a certain way. In most cases you can't set it
up just any way you want, but have to adjust to
the language you are using-- although today's
‘l;nguages tend to allow more and more types of

ata.

Plainly, then, it is these overall structures
that we really care about; but to understand over-
all structures, we need an idea of all the different
forms of data that may be put in them.

VARIABLES AND ARRAYS

The iest data str in p)
and still the predominating ones, are variables and
arrays. (We met them earlier under BASIC, see

tp.iz’l‘], and APL, see . [2:5.)

A variable is a space or location in core
memory. (For convenience, most programming
languages allow the programmer to call a variable
by a name, so that he doesn't have to keep track
of its numerical address.)

core

svsre
e
L} k)

An array (also called a table) is a section
of core memory which the programmer cordons off
for the program to put and manipulate data in. If
SPENCER is the name of the array, then SPENCER (1)
is the first memory slot in it, SPENCER(2) is the
second, and so on up to however big it is.

Srencer(y)
L srewcee(i)

srevcer(y

(You can get a feel for how this ordin-
arily relates to input from outside-- see "How
Data Comes, Goes, and Sits," nearby.)

The contents of a numerical field, or
piece of data coming in, can simply be stuffed
by the programmer into a variable.

The contents of a record, or unified
set of fields, can get put into an array. The
program can then pick into it for separate
variables, if desired, or just leave them
there to be worked on.

Then you twiddle your variables with
your program as desired.

When you've done one record, you
repeat. That's how Iots of business programs
go. Some other routine kinds, too.

FANCY STRUCTURES

Many forms of advanced programming are
based on the idea that things don't have to be stored
next to each other, or in any particular order.

If things aren't next to each other, we need
another way the program can tell how they belong
together.

A pointer, then-- sometimes called a link--
is a piece of data that tells where another piece of
data is, in some form of memory. Pointers often
connect pieces of data.

One piece Pointer
of Data

Another piece
of Data

A pointer can be an address in core memory; it
can be an address on disk (diskpointer); it can
point to a whole string of data, such as a name,
when there is no way of knowing in advance how
long the string may be (stringpointer).

A series of pieces of data which point to each
other in a continuing sequence is called a threaded
list.

For this reason the handling of data held together
by pointers-- even though it may make all sorts of
different patterns-- is called list processing. (The
(The term "list processing" might seem to go a-
gainst common sense, as it might suggest something
like, say, a laundry list, which is structured in a
very simple blocklike form. But that's what we

call it.)

Prominent list-processing languages include
SNOBOL, L6 and LISP (see p.J3!). There is argu-
ment as to whether TRAC Language is a list-proc-
essing language.

Here are some interesting structures that
programmers create by list processing:

RINGS (or cycles). These are arrangements
of pointers that go around in a circle to their first
item again.

head

) a
TREES. These are structures that fan out.

(There are no rings in a tree structure, technically
speaking.)

e
o7 /1 3\

l
ODooouo ngo

.
.

GRAPH STRUCTURES (sometimes called
plexes). Here the word "graph" is not used in the
ordinary way, to mean a diagrammatic sort of pic-
ture, but to mean any structure of connected
points. Rings and trees are special cases of graph
structures.

O

RN -

O 0
\UQ

Graph structures
can go any which way.

FAST-CHANGING DATA

One of the uses of such structures is in
strange types of programs where the interconnec-
tions of information are changing quickly and
unpredictably. Such operations happen fast in
core memory. In this kind of programming (for
which languages like LISP, SNOBOL and TRAC
Language are especially ient), the poi S
are changed back and forth in core memory, every
which way, all the time. Presumably according to
the programmer's fiendish master plan-- if he's
gotten the bugs out. (See Debugging, p.30.)

FANCY FILES

But these structures are not restricted to
data in core memory. Complex and changeable
files can be kept on disk in various ways by the
same kind of threading (called "chaining" on mass
storage) .

CHAINED FILE ON DISK

O
o

S

\ FinaL
Bwek

Another way of handling changeable files is
through a so-called directory block, which keeps
track of where all the other blocks are stored.

Dl ilrec'(aw, Loek
AN

D | E_l -« Llnclrxoﬁme

But these techniques, you see, may be used
in both fast and slow operations, and for any pur-
pose, so trying to categorize them tends not to be
helpful. (Note also that these techniques work
whether you're dealing with bits, or characters,
or any other form of data.)

Data structure

may consist of

any conceivable

symbolic representations,
knitted into

an overall information setup.

Note: By decent standards of English,
the word data should be plural, datum sin-
gular. But the matter is too far gone: data
is now utterly singular, like "corn" and
"information," a granular collective which
may be scooped, poured or counted.

But I draw the line at media. Media
are many, "media" is plural!

k CLASSIE MSUNDERSTANDING

"Computers put everything into pigeonholes."

Wrong. People put things into pigeon-
holes. And designers of computer programs
can set up lousy pigeonholes. If you let 'em.
More sophisticated programming can often
avoid pigeonholes entirely.

k BT Is Nt A Bece

People who want to feel With It
occasionally use the term "bit" for
any old chunk of information, like a
name or address. This is Wrong.

A Bit is the smallest piece of binary
information, an item that can be one
of two things, like heads or tails,

X or O, one or zero; and all other
information can be packed into a
countable number of bits. (How many
may depend on the data structure
chosen.)

As a handy rule of thumb:
every letter of the alphabet or punc-
tuation mark is eight bits (see ASCII
box); for heavy storage of everyday
decimal numbers, every numerical
digit can be further packed down (to
four bits in BCD code).

A CONCRETE EXAMPLE. Suppose we want Here are some assumptions I have embodied
to rep the g logy of the hs of Eng- in this data structure. That is, I had them in
England, so far as is known, in a computer data mind. (The parts you didn't have in mind are
structure. NOTE THAT A DATA STRUCTURE IS what get you later.)

DIFFERENT FROM A PROGRAM: if several program-
mers agree beforehand on a data structure, then
they can go separate ways and each can write a
program to do something different with it-- if they
have really agreed on a complete and exact layout,
which they may only think they've done.

Parents and children of monarchs
are included, as well as
monarchs.

All monarchs have a separate mon-

dila

No monarch reigned more than A T
o amyaja

First we consider the subject matter. Gen- twice.
ealogy is conceptually simple to us, but as data No monarch or parent of a monarch 4ka7 34 V a M
— T.SE,

is not as trivial as it might seem at first. Every had more than five children

person has two parents and a specific date of birth. of one sex. (Note the danger

Each pair of parents can have more than one child, of these assumptions.)

and individual parents can at different times share We are not interested in grandchil- T “Aﬂ(LAA

parenthood with different other individuals. dren of monarchs unless they
are also monarchs, or siblings,
or parents of monarchs.

The information about the different
people can be input in any
order, as the years of reign
can be stepped through by a
program to find the order of
reign.

Presumably we would like a data structure
that allows a program to find out who was a given
person's parent, who were a given person's chil-
dren, what brothers and sisters each person had,
and similar matters (so far as is known by histor-
ians-- another difficulty).

" The;‘e is a growing feeling that data processing people
)) would benefit if they were to accept i

) If this seems like too much bother, that is point of view, one t};m would libegut: tl:: l:;:l);c:é:n
in a way the pqint. Data structures must be programmer's thinking from the centralism of core
thought out. Since computers have no intrinsic storage and allow him the freedom to act as a naviga-
wey.o{ operating or of handling data (though tor within a database. This reorientation willg
particular language‘s will restrict you in partic- cause as much anguish among programmers as the
ular ways), you will have to work all this out, heliocentric theory did among ancient astronomers and

Note that just because it is simple to put this
information in a wall chart, that does not mean it
is simple to figure out an adequate data structure.

Note too, that any aspect of the data which

is left out cannot then be handled by the program.
What's not there is not there.

date of 1st reign, if any 17
date of 2d reign, if any 18

The easy way out is to use a language like,
say, TRAC Language, and use its basic units (in
this case, "forms") to make up a data structure
whose individual sections would show parentage,
dates, brothers and sisters and so on.

The braver approach is to try to set it up
for something like FORTRAN or BASIC, languages
which treat core memory more like a numerically-
addressed array or block, as does rock-bottom
machine language.

Let us assume that we have decided to use
an array-type data structure, for instance to go
with a program in the BASIC language on a 16-
bit minicomputer. We do not have much room
in core memory, so for each person in our data
structure we are going to have to store a sepa-
rate record on a disk memory, and call it into
core memory as required.

After much head-scratching, we might
come up with something like the following. It
is not a very good data structure. It is not a
very good data structure on purpose.

It uses a block of 28 words, or 448 bits,
per individual, not counting the length of his
name, which is an additional 8 bits per char-
acter or space. However, this in itself is nei-
ther good nor bad. It's more than you might
expect, but less than you might need.

(Incidentally, out of concern for storage
space, some data fields are packed more than
one to a 16-bit computer word. This is scorn-
fully called bit-fiddling by computerfolk who
work on big machines and don't have to worry
about such matters.)

T

1 Llpgnnrch no. (if any) ,sex_w
individual's own 2 [serial no.
(name) 3, | stringpointer I
4 |_ _ _(two 16-bit words long)l
mother 5 | serial ‘no. _ T 7
father 6 serial no. o
brothers 7 [serial no.
(up to five) 8 .
9 .
10
11 R .
sisters 12 serial no.

(up to five) 13
' 14
15 !
16

female children, 19

up to five 20 .
21 .
22
23 T L -
male children, 24 serial no.
up to five 25 .
26 .
27

—(1 bit)

(t* nome
2res

28 |

As explained already, that was the basic
block. We still have to keep the names some-
where, in a string area. Whether to keep this
in core all the time, or on disk, is a decision
we needn't go into here.

NAME AEER (pokel 2K

to 1 [6-bit we

0D LETTERS EVEN LETTUS
[I A ﬁ’
_drngpes { C——
H €
L—‘n R
I —
v
v €
T H
€ [N
R €
D
T 0]
E
% N
R [
A D
Y .

)

and a carelessly chosen data structure will leave
something out, or fail to distinguish among im-

portant differences, or otherwise have its revenge.

(For instance, if you haven't noticed yet:
we left out legitimacy. For many purposes we
want to know which kings were bastards.)

(Self-test: is five bits long enough to ex-
press the greatest number of months any English
monarch reigned? -- see "Binary Patterns." Or
do we have to fix this data structure on that
score also?)

To give you a sense of the sort of program
this data structure allows:

A program to ascertain how many kings
were the sons of kings would look at each entry
that had a monarch number, test whether the
monarch was male, and if male, would look at
the male parent's serial number. Then it would
look up that parent's entry, and see whether it
in turn had a monarch number, and if so, add
one to the count it was making. Then it would
g0 back to the entry it had been looking at,
and step on to the one after that.

This is actually a pretty lousy data struc-
ture. The clumsiness of this approach to such
data-- and you are welcome to think of a better
one-- shows some of the difficulties of handling
complex data about the real world. Things like
lengths of names and numbers of relatives pro-
duce great irregularities, but make these kinds
of data no less worth of our attention.

We could add lots of things to our data
structure (and so make it more unwieldy). For
instance, we might want to mark each serial
number specially if it referred to someone who
was the offspring of a monarch. We could sim-
ply set a particular bit to 1 in the serial number
for them (called a Mvor tag). We could also flag
dates and genealogies that are regarded as un-
certain. There is no limit to the exactness an
complexity with which information may be r_eg——-
resented. But doing it right can, as always,
be troublesome.

A lot of computer people want to avoid
dealing with complex data; perhaps you can be-
gin to see why. But we must deal with the
true complexities of information; therefore lan-
guages and systems that allow complex informa-
tion structures must become better-known and
easier to use.

THE FRONTIER: COMPLEX FILE STRUCTURE

The arrangements of whole files-- groups
of records or other info chunks-- are up to the
programmer. The structure of files is called,
not surprisingly, file structure, and it is up to
the programmer to decide how his files should
be arranged.

Habits die hard. The notion of sequence--
even false, imposed sequence-- is deep in the
racial unconscious of computer people. An inter-
esting concrete term shows this nicely. Because
computer people often think any file should have
a basic sequence, they use the term inverted
file for a file that has been changed from its
basic sequence to another sequence. But increas-
ingly, all the sequences are false and artificial.
Where now are inverted files? All files are in-
verted if they're anything.

Fortunately, the final frontier of data
structure is now increasingly recognized as the
control of complex storage of files on disk mem-
ory. The latest fancy term for this is data base
system, meaning planned-out overall storage that
you can send your programs to like messengers.

The fact that IBM now has moved into this
area (with its intricate "access methods" and all
their initials) means complex storage control has
finally arrived, although the pioneering work
was done by Bachman at GE some years ago
(see bibliography). Till the last few years,
external storage, with pointers and everything,
has not been conveniently under the programmer's
control except in crude ways. Finally we are
seeing systems beginning to get around that
automatically handle complex file structures in
versatile ways that programmers can use more
easily.

theologians."
Charles W. Bachman

(piece cited in Bibliography)

Remember the song that had
a pointer data structure?

(in alphabetical order)

ANKLE BONE

—> HEAD BONE
HIP BONE
KNEE BONE
NECK BONE
SHIN BONE
SHOULDER BONE
THIGH BONE

BIBLIOS RAPHY

Malcolm C. Harrison, Data-Structures and
Programming. Scott, Foresman, 1973.

~ This book can be recommended to
ambitious beginners. It has useful sum-
maries of different languages, as well as
fundamental treatment of data structures
as they intertwine with specific languages.

An obscure and intricate study of the inter-
changeability of data structures-- how they
fund lly i vert-- has been the
longtime research of one Anatol Holt, who
calls his work Mem-Theory. Mem is from
memory, and also, conveniently, a Hebrew
letter.

This is an extremely ambitious study,
as it in principle embraces not just much
or all of computer science, but perhaps
mathematics itself. Math freaks attention:
Holt has said he intended to derive all of
symbolic logic and mathematics from
relations and pointer structures. Let's
hear it for turning Russell on his head.

I don't know if Holt has published
anything on it in the open literature or not.

However, he does have a game
available which seems weirdly to embody
these principles. The game of Mem is
available for $6.50 postpaid ($6.86 to
Pennsylvanians) from Stelledar, Inc.,

1700 Walnut St., Phila. PA 19103. It has
beautifully colored pieces, looks deceptive-
ly simple, and is unlike anything, except
discrete abstractive thinking itself. Recom-
mended .

Charles W. Bachman, "The Programmer as Navi-
gator." CACM Nov 1973.

Bachman was the prime mover in the
development of large linked disk data sys-
tems at General Electric; he is the Pioneer.
This is about big n-dimensional stuff.

David Lefkovitz, File Structures for On-Line
Systems. Spartan-Hayden Books, $12.

Alfonso F. Cardenas, "Evaluation of File Organ-
ization-- a Model and System." CACM
Sep 73, 540-548. Not surprisingly, it
turns out that different file organizations
have different advantages.

Edgar H. Sibley and Robert W. Taylor, "A Data .
Definition and Mapping Language." CACM
Dec 73, 750-759.

Example of current sophisticated
approaches: a whole language for nailing
the data just the way it should be. Has
helpful further citations.

28

" o .o
RSCIL snd ye shol| veceive
* — fhe I\w\vﬂ‘\'\,

SOMETIMES (T JUST S1TS THERE
Somenmes 1T coues RNDGOES.

Data y has to be halled into
rows, or even regiments and battalions, before
it can go into a computer.

(Some people just get their data into a
computer by sitting at a terminal and typing
it in, perhaps answering questions typed to them
by a front-end program. But they're the lucky
ones. Most of us have to get the data set up
on some kind of holding surface before it gets
fed in. That's an input medium.)

DATA MEDIA

A data medium ("medium" is the singul
of "media") is anything that holds the marks of
data outside the core memory of a computer.
Thus punched cards and punched paper tape
may be used as input media, used for putting
infc tion into a p . (EBach di
needs a corresponding input or output device,
to whisk across the surface and translate its
marks or holes into the corresponding electronic
pulses.)

There are three types of data media:
input, output and storage media. An input
medium carries the data in. An output medium
receives the results of a program; for instance,
a sheet of paper coming out of a printing device
is an output di as is a punched card or
punched paper tape.

Storage media are output media that may
be used as input media later on. Thus punched
cards and punched paper tape can be storage
media. But the better storage media use mag-
netic recording (which is faster and less bulky),
like magnetic tape and disks, or just plain
"disks" as we generally call them. (See fuller
list of mag media under "Peripherals," p. 57 .)

The units and arrangements of data used
for input, output and storage are in principle
used by the program. The blocks and records
of storage, for instance, may have irregular
data with pointers sitting in them. (Unfortun-
ately there is some carryover, in that program-
mers are tempted to use data structures which
are easy to store and run in and out, rather
than handling the true complexities of the sub-
ject. This is always a temptation.)

Let us consider the units and arrangements
of data used for input and output and storage.
These are, respectively, fields, records, files
and blocks.

THE PUNCH CARD

Let's begin with a fun example: that
hoary old medium for input and output, the
punched (or "punch") card. The punch card
will show us what a field is.

The punch card is generally believed to
have been invented by Herman Hollerith (al-
though the author's in-laws had bitter recollec-
tions to the contrary). It was first used on a
broad scale to count up the census of 1890, and
later became an early cornerstone of IBM, but
that's another story.

The. punches on a card rep a row
of information (such as a row of typed letters).
this is not obvious because the card is a rec-
tangle rather than a line. However, the length
of the card is actually divided into eighty posi:
tions, each of which may hold one number,

lphabetic ch or p ion mark.
These positi are narrow col y .
eighty of them, with different positions in which
holes may be punched. One hole in a column
represents a numeral; which position in the
column specifies what number. Two holes in
a column generally mean a letter of the alphabet,
three holes in a col mean a p ti
mark.

domer «
15 ot :1- [
con nohe sog
s emls ave
)“ [N ur,
U‘TK woe
vpsida - dewr

ov baclwridse

(e boe

doOrnlys 1 f

oy 3 awd
v syee
g..,.. Lm(w

Vg WM SuR ﬂ‘r.!.hhs‘
A (oo \avsle) LRSS "““"
elf-bfety) Y AT

b

Data is punched into cards according to
some plan associated with the program.

Beyond those simple matters there is no
preordained g for infi tion on a
punch card; it all depends on what the program
calls for. But each separate piece or section
of information-- each bunch of consecutive
characters that together have a specifi
-- are called a field.

A field can be a name, a number, an

amount of money, an alphabetical code repre-
ting thing, a rical code rep

ing something, or other stuff. When the cards
go into the program, the program can pick off
the information it needs one field at a time--
putting the field in columns 1 to 17 into one
program variable, the field from columns nine
to ten into ther program iable, and so
on.

The punch card is an important example
of an input unit influencing the structure of
computer programs. It is convenient to use
fields on a punch card as the basic data struc-
ture of a program and say, "That's the way it
has to be for the computer. In the worst cases
we see the workings of the "punch card men-
tality" or "80-column mind" (see box).

~»People will often thrust a punched data
card at you and ask, "What does this mean?"
Who knows? It may have lettering banged along
the top, showing what characters the holes rep-
resent, but if these characters don't shqw any-
thing understandable, such as the person's name,
you're in ‘the dark. The card may have pre-
printed section lines dividing it up, but these
are rarely self-explanatory. It's often im-
possible just to look at a punched card and
tell by eye what the individual fields are for,
or even where they begin and end; all that
depends on the program. Only someone who
understands the program, or at least knows
what fields the card is divided into and what
the characters represent there, can help.

Sometimes, in dismal systems we encoun-
ter day-to-day-- like for university registration
-- a punch card will have a person's name in
the first few columns, or worse, a personal
serial number. Other information continues
from there. These may or may not be recog-
nizable, either from reading the holes by eye,
or from designations pre-printed on the card.

"ASCLI wit,

¢ what qoor C‘*f"r"’
wll do for you. "
— IBM

ASCII code. You can figure out from
the table the bit pattern for any letter, or
what any given combination of seven bits
means.

Example. Find the capital letter G
in the table. For the first three bits of the
code, look at the top of the column: 100.
For the next four, look sideways to the
left: 0111. So G is: 1000111.

(An eighth bit is used as a check on
the number of ones in the code; this is
called the parity bit, and either rounds to
an”even number of bits (even parity) or an
odd number of bits (odd parity). Thus if
a code comes through to the computer with
a wrong number of ones, the computer
can take remedial action.)

Those funny multiletter codes are for
controlling terminals and like that.

Pocket card courtesy of Computer
Transceiver Systems, Inc.

MAGNETIC STORAGE

The same principle of fields lies in
other data media, especially magnetic tape and
disk. We may extend the notion of a field to
explain records and files.

A field, ¢ lly speaking, is a +
of positions on some medium reserved for one
particular piece of information, or the data in it.

A record is a bunch of fields stored on
some medium which have some organized use.
(For instance, the accounting information held
by an electric utility company about a particular
customer is likely to be stored as a record with
at least these fields: account number; last name;
initials; address; amount currently owed.)

A file is a whole big complete bunch of
information that is stored someplace. In many
applications a file is composed of numerous

imilar, tive ds. For i ,
an electric company may well store the records
for all of its customers on a magnetic tape,
ordered by account number (account 000001
first).

Storing sequences of similar records in
long files is typical of business programs,
though perhaps this should begin to chang
It's especially suited to batch processing,
that is, handling many records in the same
way at the same time, (See "System Programs.")

Now, the divisions of field, record and
file are conceptual: they are what the program-
mer thinks about, based on the information
needs of a specific computer program.

FI-€
Trre
\
aloex s /
Blosk-
Flamy \
~
BLOCKS

A block is something else, which may be
related only to quirks of the situation.

A block is a tion of stored N
divided either according to the divisions of the
data or peculiarities of the device holding it,
such as a disk drive. Short records may be
stored many to a block. If records are long
they may be made up of many blocks.

=In particular, tape blocks can be almost
any size, while disk blocks often have a certain
fixed size (number of characters or bits) based
on the peculiarities of the individual device.
(This can be a pain in the neck.)

On the other hand, due to the quirks of
magnetic recording, your program usually can't
just chang hing in the middle of a block;
the whole disk block or tape file has to be re-
placed. This is less trouble with a short disk
block than a long tape file.

The com e arw
¢ wrTe ong
\;(,oq:l*;/r Lloek 51‘.\"7&(/ L¢ “" Lias to

wrfe oq“fl\g
whde Tope file

2T once,

—_— e

TRADITIONAL CONVEYER-BELT PROGRAMS

Many traditional business programs are of
this type, reading in one data record at a time,
doing something to it (such as noting that an
individual has paid the exact amount of his gas)
and writing out a new record for that customer
on the current month's tape.

THE PROBLEM

Standardized fields, blocks and records
are often 'y Or conv But, on the
other hand, the kinds of computer programs
people find oppressive often have their roots in
this kind of data ge and its iated styles
of programming, especially the use of fixed-field
records as the be-all and end-all. The more
interesting uses of the computer (interactive,
obliging, artistic, etc.) use a greater variety

of data structures.

People's naive idea of "programming" is often a reasonsble
approximation to the notion of "data structure.” Data structure
is how information is set up. After it's set up, programs

can twiddle it; but the twiddling options are based on how

the information is set up to begin with.

TIE MAGIC. OF DATA

How does a computer program
print hing out on a printing
machine? It sends the code for each
letter out to the printing machine.

How does a computer program
respond to something a user types in?
It compares the codes that come in
from the letters he types with a
series of codes in memory, and when
it finds a match between letters,
numbers, words or phrases, bran-
ches to the corresponding action.

How does a computer program
measure something? It takes in
numerical codes from a device which
has already made the measurements
and converted them to codes.

—_'*_b
DOES NOT COMPUTE!

Some TV writer's
idea of a computer
announces this when
data are insufficient or
contradictory. Ho hum.

Coyed-DoWN DATA:
AN 1DEA WHOSE TiMe
HAS PASSED

Codes are patterns or symbols which
are assigned meanings. Sometimes we
make up special codes to cut down the a-
mount of information that has to be stored.
On your driver's license, for instance,
they may reduce your hair color to one
decimal digi: (four bits of information),
since there are less than nine possibilities
for quick identification of hair-color anyway.

Obviously, codes can be any darn
thing: any set of symbols that is less than
what you started with. But by compressing
information they lose information, so that
subtleties disappear (consider the use of
letters A to F to grade students). When
you divide a into gories, not
just the fe of the categories, but the
places you draw the line—- called "breaks"
or "cutting-points"-- present problems. Such
chopping frequently blurs out important dis-
tinctions. Coding is always arbitrary, fre-
quently destructive and stupid.

Lots of ways now exist to handle writ-
ten information by computer. These often
present better ways to operate than by using
codes of this type. But many computer pro-
grammers prefer to make you use codes.

(NOTE: there are two other senses of
"code" used hereabouts: 1) the binary pat-
terns made to stand for any information,
especially on input and output; 2) what
computer programs consist of, that is, lines
of commands.)

JoME POINTS

"Logical deductit really ists of tech-
niques for finding out what's already
in a data structure.

"Logical inconsistency” means a data
structure contradicts itself. Rarely
does it happen that a computer helps
you diseover something new about a
subject that you didn't suspect or see
coming without the computer; after
all, you have to set up a study in
such a way as to make room to find
things out, and you can only make
room to find some things out.

THE PUNCH CARD MENTAL\TY

Punch cards are not intrinsically evil.
They have served many useful purposes.
But the punch-card mentality is still around.
This will be seen in the programmer who
habitually sets things up so we have to use
punch cards (when other media, or inter-
active terminals, would be better); who in-
sists on the user or victim putting down
numbers (when with a little more effort the
program could handle text, which is easier
for the human, or even look up the infor-
mation in data it has already); who insists
that people's last names be cut down to
eleven letters because he doesn't feel like
leaving a longer field or handling exceptions
in his program; who insists on the outsider
cutting his information into snarfy little codes,
when such digestion, if needed at all, could
be better done by the program; and so on.

The punch card mentality is responsible
for many of the woes that have been blamed
on "computers."

IF Y50 WANT NUMBEKS,
WE 6Ot 'eM

The basic kinds of number operations
wired into all computers are few: just add
(and sometimes subtract) binary numbers.
However, up above the minicomputer range,
a computer may have multiply, divide, and
more. Fancier computers offer more types
and operations on them.

PLAIN BINARY-- Very important for coun-
ting. Represents numbers as
patterns of 1's and 0's (or X's
and Ohs, if you prefer). How
to handle negative numbers?
Two ways:

TRUE NEGATIVE-- binary number
with a sign bit at the begin-
ning, followed by the number.

Hamnumah|
Trouble is, the arithmetic is
harder to wire for this kind,
because there are two zeroes
(plus and minus) between 1
and -1.

ADDABLE NEGATIVE-- this system
does a sort of flip and begins
a negative number with all
ones. It means that the ma-
chine doesn't have to have sub-
traction circuitry: you just add
the flipped negative version of
a number, and that actually
subtracts it. This has now
caught on generally. (t's
usually called "twos complement
negative," which has some ob-
scure mathematical meaning.)
BCD (Binary-Coded Decimal)-- the accoun-
tant's numbering system. Used by
COBOL (see p. 5\). It's plain old
decimal, with every numeral stored
in four bits; the machine or language
has to add them one numeral at a
time, i d of cr h
full binary words.
FLOATING POINT-- the scientist's number
technique for anything that may not
come out even. Expresses any
quantity as an amount and a size.

l | 1
fize amoun

(uith resped womera]

Gl pornt))

The "amount" part contains the ac-
tual binary numerals, the "size" is
the number of places in front of or
after the decimal point that the num-
ber starts. Very important for as-

ical and infinitesimal)
since a floating-point number can be
bigger, say, than

9,876,543,210,000
or smaller than
.00000001234567

For some people even this isn't pre-
cise enough, so they program up
il precisi rithmetic,” which
carries out arithmetic to as many
places as they want. It takes much
longer, though.

WHAT'S AVAILABLE IN
MACHINES AND LANGUAGES

Some machines, like the 360, are
more-or-less wired up to handle several
number types: binary, floating point, BCD.
Little machines usually only have plain bin-
ary, so other types have to be handled by
programs built up from that fundamental
binary.

Languages make up for this by
providing programs to handle numbers in
some or all of these formats. There are
languages that offer even more kinds of
numbers--

IMAGINARY numbers
(two-part numbers
following certain rules)
QUATERNIONS
(like Imaginary numbers
but worse)
and goodness knows what else.

On the other hand, some languages
restrict what number facilities are avail-
able for simplicity's sake. BASIC, for
instance, doesn't distinguish between
integers ting bers) and those
with decimal points; all b may have
decimal points. TRAC Language only
gives you integers to start, since it's easy
enough to program other kinds of number
behavior in (like infinite precision).

For historical reasons computers have
been used mostly with numbers up to now;
but that is going to be thoroughly turned
around. Within a few years there may be
more text-- written prose and poetry--
stored on computers than numbers.

During the recent massive lawsuit by
Control Data against IBM, it was revealed
that IBM had an awesome number of letters
and communications stored on magnetic
memory .

When 1 lived in New York, I had a
driver's license with the staggering serial
number

NO 5443 12903 3-4121-37

Now it may very well be, as in some
serial bers, that inf ion is hidden
in the number that Insiders can dope out,
like my criminal record or automobile acci-
dents, if any. (N is my initial, and two
of the digits show my date of birth, a handy
check against alteration by thirsty minors.
But the rest of it is ridiculous.) The fact
that that leaves 15 more decimal digits means
(if no other codes are hidden) that New York
State has provision in their license numbering
for up to 999,999,999,999,999 inhabitants.

It is doubtful that there will ever be that
many New Yorkers, or indeed that many
human beings while the speci d .

In other words, either New York
State is planning on having many, many
more occupants, or an awfully inefficient
code has been adopted, meaning a lot of
memory space is wasted holding those
silly big numbers for millions of drivers.
However, that doesn't represent a lot of
money. 10 million decimal spaces these
days fits on a couple of disk drives. But
it's an awful pain in the neck when you
want to cash a check.

INFUT AS OUTRUT Cops

Data has to get inside the machine
somehow, and results have to get back out.
Two main types of codes-- that is, stan-
dardized patterns-- exist, although what
forms of data programs work on inside
varies considerably. (The input data can
be pletely f d before i 1
work starts.)

1. ASCIH (pronounced "Askey,"
American Standard Code for Information
Exchange. This allows all the kinds of
numbers and alphabets you could possibly
want (for instance, Swahili) for getting
information in and out of computers.

ASCII is used to and from most
Teletype terminals and keyscopes.

However, ASCII is also used for
internal storage of alphabetical data in
many non-IBM systems, andit is also the
running form of a number of programming
languages, such as TRAC language (see
p.\8), TECO (s&p<__), and GRASS

(see Pyj)i)‘

IBM's deliberate undermining of the
ASCII code is a source of widespread anger.
(See IBM, p.52.)

2. EBCDIC (pronounced "Ebsadick,")
Extended Binary Coded Decimal. This was
the code IBM brought out with the 360,
passing ASCII by. (IBM seems to think of
compatibility as a privilege that must be
earned, i.e., paid for.) EBCDIC also al-
lows numbers, the English alphabet, and
various punctuation marks. This is used
to and from most IBM terminals ("2741
type").

4’\{ 4’)‘6:
HOLLERITH, meaning the column
patterns that go in on punched cards.
(They can also come out that way, if you
want them to.)

CARD-IMAGE BINARY. If for some
reason you want exact binary patterns
from your program, they can be punched
out as rows or columns on punch cards.

STERLING. Just to show you how
comical things can get, the original PL/I
specifications (see p. 3|) allowed numbers
to be input and output in terms of Pounds,
Shillings and Pence (12 pence to the shil-
ling, 20 shillings to the pound). No pro-
vision was made for Guineas (the 21-shil-
ling unit), or farthings, unfortunately.

30

IGIC. ENGURGES

A computer language is a system for casting spells.
This is not a metaphor but an exactly true statement. Each
language has a vocabulary of commands, that is, different
orders you can give that are fundamental to the language,
and a syntax, that is, rules about how to give the commands
right, and how you may fit them together and entwine them.

Learning to work with one language doesn't mean
you've learned another. You learn them one at a time,
but after some experience it gets easier.

There are computer languages for testing rocketships
and controlling oil refineries and making pictures. There

are computer languages for sociological statistics and designing

automobiles. And there are computer languages which

will do any of these things, and more, but with more difficulty
because they have no purpose built in. (But each of these
general-purpose languages tends to have its own outlock.)

Most programmers have a favorite language or twec,
and this is not a rational matter. There are many different
computer languages-- in fact thousands-- but what they
all have in common is acting on series
Beyond that, every language is differe:
the questions are

WHAT ARE THE INSTRUCTIONS?
and
HOW DO THEY FIT TOGETHER?

Most computer languages involve somehow typing
in the commands of your spell to a computer set up for that
language. (The computer is set up by putting in a bigger
program, called the processor for that language.)

Fortran Machme 1 K\&l wavage Machine
>

©oco0ococeeo000000C0 6ocococecoecoococoo

RNV
(S48 4 4 LIl L L p bty

S;:;’;::;’“;‘:v‘:gz processrs Joaded
w 3 core Auq-r;)

Then, after various steps, you get to try your program.

Once you know a language you can cast spells in
it; but that doesn't mean it's easy. A spell cast in a computer
language will make the computer do what you want--

IF it's possible to do it
with that computer;

IF it's possible to do it
in that language;

IF you used the vocabulary
and rules of the language
correctly;

and IF you laid out in the spell
a plan that would effectively
do what ycu had in mind.

BUT if you make a mistake in casting your spell, that is
a BUG. (As you see from the IFs alove, many types of
bug are possible.) Program bugs can cause unfortunate
results. (Supposedly a big NASA rocket failed in takeoff
once because of a misplaced dellar sign in a program.)
Getting the bugs out of a program is called debugging.
It's very hard.

DESIGNING COMPUTER LANGUAGES

Every programmer who's designed a language, ancd
created a processor for it, had certain typical uses in mind.
If you want to create your own language, you figure out
what sorts of operations you would like to have be basic
in it, and how you would like it all to fit together so as
to allow the variations you have in mind. Then you program
your processor (which is usually very hard).

. So for each language,

b INTERPRETER X

carries out each instruction
as it's encountered.

—_—
—

f@@
|

% & COMPILER ¥

chews the instructions
of the language
into another form
to be processed later.

& Dlerpréer eavvies ool

ﬁCmr:lu sels 9.

flow bo
CompuTeR (RNGURGE
WOR K ™

Basically there are two different methods.

A compiling language, such as FORTRAN or COBOL,
has a compiler program, which sits in the computer, and
receives the input program, or "source program," the way
the assembler does. It analyzes the source program and
substitutes for it an object program, in machine language,
which is a translation of the source program, and can actually
be run on the computer. The relation of the higher language
is not one-to-one to machine language: many instructions
in machine language are often needed to compile a single
instruction of the source program. (A source program of
100 lines can easily come out a thousand lines long in it
output version.) Moreover, b of the interdependency
of the instructions in the source program, the compiler
usually has to check various arrangements all over the
program before it can generate the final code.

Most compilers come in several stages. You have
to put the first stage of the compiler into the computer,
then run in the source program, and the first stage puts
out a first intermediate version of the program. Then you
put this version into a second stage, which puts out a second
intermediate version; and so on through various stages.
This is done fairly ically on big P s, but
on little machines it's a pain.

(In fact, compilers tend to be very slow programs;
but that depends on the of "optimizing" they do,
that is, how efficient they try to make the object program.)

An interpretive language works differently. There
sits in core a processor for the language called an interpreter;
this goes through the program one step at a time, actually
carrying out each operation in the list and going on to the
next. TRAC and APL are interpretive; it's a good way
to do quickie languages.

Interpreters are perhaps the easier method of the
two to grasp, since they seem to correspond a little better
to the way many people think of computers. That doesn't
mean they're better. For programs that have to be run
over and over, compiling is usually more economical in
the long run; but for programs that have to be repeatedly
changed, interpreters are often simpler to work with.

A BLACK ART
Making language p: s, especially pi

is widely regarded as a black art. Some people have tricks
that are virtual trademarks (see below) .

S,

Actually, the design of a language-- especially the
syntax, how its commands fit together-- strongly influences
the design of its processor. BASIC and APL, for instance,
work left-to-right on each line, and top-to-bottom on a
program. Both act on something stored in a work area.
TRAC, on the other hand, works left-to-right on a text
string that changes size like a rubber band. Other languages
exhibit comparable differences.

MIXED CASES AND VARIATIONS (for the whimsical)
There are a lot of mixed cases. A load-and-go compiler

(such as WATFOR) is put into the computer with the program,
compiles it, and then starts it going i diatel

. An interpretive

compiler looks up what to do with a given instruction by in-
terpreting it into a series of steps, but compiling them instead
of carrying them out. (A firm called Digitek is well known

for making very good compilers of this type.) An incremental
compiler just runs along compiling a command at a time;

this can be a lot faster but has drawbacks.

BIBLIOGRAPHY .

David Gries, Compiler Construction for Digital Comp S.
Not for beginners, but a beautiful book. Good on
abstract theory of languages, too.

A program is like a nose;
Sometimes it runs, sometimes it blows.

Attributed to Howard Rose.
(Datamation, 1 Sep 71, 33.)

According to the grapevine...

a prestigious Southern university
had a program
where the number of months
was carelessly set to 10
(as a dimension in an array).
In November,
nobody got their checks
till this error was found.

DERUGGING-

candid photos

Debugging means changing and fixing your program till it works the way you
want it to.

This is the part of programming people like the least.

You run your program and then try to find out what went wrong. It could be
a migtake in the basic thinking ("logic error"), or a clerical error in the
particular choice of commands to carry out a well-thought-out process
("coding error").

Some systems allow you to debug interactively, from a terminal. T}‘nis helps
a lot. You can run parts of your program, get it to stop at certain points
to let you look around, and so on.

For every bug that goes out,
No program is ever fully debugged. two more bugs go in.

-- folk saying -~ folk saying

31

" .ml 1 lmssmus’s 01 Mav 73 nz.uo HRS
17 A | mv 73 02,360 M

” m Y 73 02,360 nls
tlocsuua nluvrn.!svwnul

Yedeeq, 11's

OFOL.

Research and hobby types hate COBOL or
ignore it, but it's the main business programming
language. Your income tax, your checking ac-
count, your automobile li all are p
ably handled by programs in the COBOL language.

HE GREAT
CoMputeR

A i ber of p languages
are very widely accepted and used; I list them
here. If you want to learn any of them, I believe
that Daniel McCracken has written a manual on
every one of them. (Not the variants listed,
though.)

tonu W0k 1NTEGERS
< ALPHABFTIC PHONE MU l!u procran
DIMENSION J(T),NUMB (:.\ol.ulnlszl.lmlnl.wuunl
. DATA w/!/.ul/xol.luuaol.l.lnul
Ve
W INL2=INL#1
< READ PHONE NUMBER AND TITLE LINE
10 READ(NR,11){INCT),1o1,INL)
11 FORMAT(80A1}
c FIND LAST NON-BLANK IN TITLE LINE
00 12 l-hl’lL

w2-1
ltunmu 18L)13,12,13
12 CONTINE
WRITE TITLE LIN
COMPUTE snnvn«: POINT ON PRINT LINE
13 LiNX=(K/8e1
nslw.ulumn.l-l.n
16 FORMATS
CONVERT

LYy

o

HONE NUMBER TO NUMERIC

Why their names are always spelled with
capital letters I don't know. (Generally they

COBOL, or COmmon Business Oriented Lan-
This program was a surprise from ’ _
v 18 I=1.7 Alan Nelles, a student at Chicago guage, was more or less demanded by the Depart
00 15 k=110 Circle. He was amused by my prac- ment of Defense, and brought into being by a
15 Lontimpe SIS tice of alphabetiaing phone num- committee called CODASYL, which is apparently
« P e T T s vy o sy e
-1, . is designe cally -
get let down in longer articles, though.) ! '6:‘:%:& *::;:L) cribed elsewhere), and uses verbose and plonking
SIeLFTTU K Premises of the program: you sup- command formats.
on s f2=1:3 ply it with your phone er,

2V eLETTE 120K it prints out all the alphabetical Just it's standard for busi

Ol* [N combinations that could also be . N
JOIRLETTU, K dialled to reach your telephqne. p;'togral:lming doesl; t mean it's the best or most
" =1 . efficien guage for progr
frpitrei . (“J“‘J" Fortvan. I've talked to people who advocate business pro-
oonh 5101 gramming in FI(J)RTRAN BASIC, TRAC and even
K= NUMI * ’ »
H i APL. But then you get into those endless argu-
KaNUMB(6)+

ments... and it turns out that a large proportion
of business programmers only know Cobol, which
pragmatically settles the argument.

JUB)=LETT(16,K)
FORTRAN was created in the late fifties, PR
largely by John Backus, as an algebraic pro- FHA A
gramming system for the old IBM 704. (However,

the usual story is that it stands for FORmula oL v There are people who say they've discovered
TRANSslator.) hidden beauties in COBOL; for instance, that it's
2 WRITE(NW,3) (LINECL) o1 o LINX) a splendid language for complex pointer manipulation
Fortran is "algebraic,” that is, it uses 3 g e razan) (see Data Structures, p. 2>). That's what makes
an algebraic sort of notation and was mostly .o i horse racing.
e emied out e sofi of formulas. thet you e
carried out the m
use m highschnol u“br.. lt's Btrong on num- 7 Hll'E(u\i.!llLllﬂll-l 1, LINX) c‘// f lc
8 CALL !ll' &"‘C ‘M w‘
bers carried to a lot of decimal places ("scientific" €D aall T H"“C
n“m"ers) and the hm g °f m.ys whicrl is A e 0000 NUMB (T I.S'T(I LINE(L e NUM(T)=0109-0100 i K
h ol w -) . .
ing eloe lcians and engineers do Derty dmeled T hLiy oloe T BT I, E R e "After you study it for eix months, it makes
alot (see Arrays under BASIC). RN Taii deonr 1501 1e0118 1641 120119 1701 1e0114 Ler 1=o11n perfect gsense." --An IBM enthusiast.
JCL is a language with which you submit programs
Fortran has grown and grown, however; s{:’“tﬁgﬁu?‘"‘-_‘sz:z H -nong 1o it 12 ':;;i 13 =016A 15 =0lAA 16 =0183 1 =0ICB 2 =0294 to an IBM 360 or 370 computer. "Submit" is right. Its
- - B = complications, which many call unnecessary, symbolize
e e vt o e 1ot of variants Iike resnnes stomee the cazeer of sibmission to TN upon which e 360
Fortran Pi’("lmtionnl and somewhere between 10cs programmer embarks. (See IBM, pp. 52-3, and 360, p. 41.)
,
I and IV"), WATFOR and WATFIV. e SUMEn " "MAT ACONP WIOIX SUBSC TYPEN WOLEB PRNTN EBPRT
The la: Fortrans-- that is, 1 e consnnvs. 012F : 70120 10.0121 320122 0s0123
rger Fortrans-- thal anguage 120 “01F o o
processors that run on the bigger computer - CoRe REQUIREMENTS :n:lm‘;:: R NO o l >
now have many operati not d in SARjasees © 206 PAOGA 336
the original Fortran, including operations for

handling text and so on.

ENO OF COMPILATION SNOBOL is the favorite computing language

of a lot of my friends. It is a list-processing
language, meaning it's good for amorphoun dnta.
(It derives from 1 previous list-p
languages, especially IPL-V and COMIT)

BASIC, presented earlier, is in some res-
pects a simplified version of Fortran.

Behold some of the combinations. The recipient picks out the one he likes from 2% pages of them.

AGOL [esT,

EGUIMAK FGUIMAL EGHTMRY EGUIMAK FONTFAL FRUTMC) MUK ar R D i i
gt FenL CEADY TUMUSRY AR Foliinl PRI LT TS o THOBOL 1s & big lsaguage, and Ay mans
FEVGRRK ERviuAL EGX ¥ " e FOVANAK £ t on big computers. The main concept of it is
GNAK FLYOIAD, o :) h
EGVANCK FGVHMC L 3 > RS ECVIGL 1 GUINIAS FEVIIAK F b0 AL the "pattern match," whereby a string of symbols
) FRVIMAX EGVIMAL Kr.VIHIJ F'Vlnll WAVINAL FOVINTG |

EGVMNSK FGVHNAL FRVHACJ EGVHNCK
EGVINAK FGVINAL FGVINBJ FGVINRK
EGVINGL EMTAMAS FHTGMAK
FHTGHRK FHTGNRL FHTGNCS EMTGNCK
FMTHMAK EHTHMAL FHTHNBJ EMTHMAK
EHTHMCL FHTHOAJ ERTHNAK
EMTIMAK EHTIMAL FHTINC EWTINCK
EHTINAL FHTINBY EMTIORK FHTIORL FMTIOCJ FHTINCK

FGu WK EGU ML
EGVINAY FRVINAK FGYINAL FRYINRS FGY[PRK EGVINAL
FHTGHC] FHTEMWCK FHTGACL FHTENAL EHTERAK EHTRNAL
FHTGNAY EMTGORK FMTGNAL EMTGICS FHTGICK FMTGOSL
FHTIMCL FHTHNAJ FHTHNAK EMTHNAL EMTHNAJ EMTHNAK EHTHNAL

FHTHOCS FHTHOTK EWTHOCL EWTIMAJ FHTINAK EWTINAL
FITINAS EHTINAK FMTINAL EMTINGY FHTINCK FRTINGL
FHTINCL FHUGMAJ FHUGVAK FHUGMAL EMIGHR.I EMUGMAK ERIGYAL
EAIGHCL FMIGNAJ EMIGNAK EHICNAL FHUGNAD FHIGNAK EHIGNAL FHIGN) FHIFNGK EHUGYSL FHUGHAS FHIGOAK FHIGNAL
EMIGNAL FHIIGNCS EHIGACK FLAIHMAL) FUNMMAK FRINMAT EMABKAL FHIMMAK FHUMMAL FMULNC.L FHIRNGCK EHIMMG
EMIHNAL EMIUNNAS EHUMNAK FHUNC) FHIMACK EMIBNCL EMIHOAY EHIHOAX FHINAL EHUMIRS EMITHONK EHIMOR
EHIMACL FHUTWAL ENUTNAK FUIIMAY FHITMRK FHITMAL FHUTNC S FHUTMK FrITNAS FUITNAK Fri INAL
EMIINAY FHUTNRK EMIINTY EMITOTK EMITACL
MVGMAK FHVGNAL FHVGMAJ EHVGMAK FHVGHAL FHVEMCY FIVGHCK FVVGVCL EMVGNAJ FUVGNAK FHVGNRY FMUGNRK FHYGNRL
EMVGNCK FHVGNCL FHVGNAS EWVGIAK EWVGOAL FHVGIRY EHVAORK EWVGNRL FHVGNC.| EMVE(N K EHVHMAY FHVMMAK EMVHMAL
FHVHMC EHVHMCK FHVMNCL FHVHWAJ FMVINAK FHVINAL FMVKNF FHUHDAK EHVHNC) FIVINCK FHVHAG L
EHVHNAK EHVHOAL FHVHORJ EHVHNAK EHVHOAL FMVHNICJ EMVMAICK FHVHICL FHVIMAJ EHVIMAK EMVIMAL ENVI'IRJ EMVINAK ERVIVRL
'K FHVIMCL FMVINAJ EMVINAK FHVINAU FHVINAS FHVINAK EMYINAL FMYING.) FMVIMCK FMVINCL FMVINAJ FHVINAK FHVIPAL
EMVINAK EMVINAL EMVINCS FHVINGK FHVINCL FITAMAS FETAMAK FITGMAL FITAMAS FITGMAK FITGMAL FITGMLJ ETTGROK FITAWSL
EITGNAK EITGNAL FITGNAS EITGNAK EITGNAL FITGNCY EITGNCK FITANCL FITGOAY ETTGNAK F1TRNAL 3 FITGORK EITGNAL

FITGNCL FITHMAY E1THWAK FITHWAL FITHVAJ E[THMAK EITOMAL FITHMGJ FITHMCK FITHWIL FITHNAJ E17HNAK ETTHNAL
E1THNAK EITHNAL FITHNCS EITHNGK FITHNCL FITHNAY FITHOAK EITHNAL FITWARJ EITHNAK FITHARL EFTHOCS FITHOCK FITHXKL

is examined to see if it has certain characteristics,
including any particular contents, relations between
contents, or other variations the programmer can
specify; and the string substitution, where some
specified string of symbols is replaced by another
that the programmer contrives.

I

FOVINCY EOVINCK

EGVINCY
FHTAMAL) EHTGMAK FHTCMAL
Il FHTGOAY FMTGNAK FHTGNAL
FHTHHC EHTHMCK
FMTHOR) FHTHARK EHTHORL
FHTINAJ FHTINAK FHTINAI

Y Pl /T

ALGOL is considered by many to be
one of the best "scientific" languages; it has
been widely accepted in Europe, and is the
standard "publication language" in which procedures
for doing things are published in this country.
It is different from FORTRAN in many ways,
but a key respect is this: while in FORTRAN
the programmer must lay out at the beginning
of his prog: ly what sp of core
memory are to have what names, in ALGOL
the spaces in core memory are not given names
except within subsections of the program,
or "procedures." When the program follower
gets to a specific procedure, then the language
processor names the spaces in core memory.

FHIENAL
EMITNAL EHIINGS EMUINCK FHIINGL FHITNAS EHIIOAK EWITINAL

FITIMAK FITIMAL EITIVAJ EITIMAC EITIMRL FITIMCS FITIMCK FITIMCL FITINAY EITINAK FITINAL EITINRJ EITINAK E[TINAL
Euenax £l

FITINCL FITINAJ EITIOPK EITINAL EITINRY FITINAK ETVIORL EITIOCY ¥]TI0CK FITINCL FUGHAY
EINGHPK FINGHAL FINGMC) EIIRMCK FEIUGMCL ETUGNAS FTHENAK E U ETUGNAY ETUGNRK ETUGHOL FTNGNS J
EIGNAK FIUGNAL FINGORY FINGNAK FINRNAL FINENCY EIUARCK ncl FIUMMAY ETOMAAK FLUMMAL F I1HMRY
ETUHMCK FIHMMCL FTUMNAY ETUMNAK FIUHMAL FIUMMAY FTUMMAK FIRMRL ETHNNG] FTIINK ETINVEL FTOMNAS
EIUMORK FIUMORL FIIHNCY ETURNCK EIUMNCL FIUTMAY FINTMAK FINIMAT FINIMAS ETUTFAK FIUIMEL FIUTMCY
ENIINAK FININAL ETHINRY EIUTNAK ETUINAL ETHINC FININCK FININCL FIUINAJ EININAK FIUINAL ZTUINAY
FINIACK FINIACL FIVGMAJ FIVGMLK FIVEMAL FIVGMAJ FIVGMAK FIVOMAL FIVGMK ETVOHCL FIVONAJ FIVGNAK FIVGNAL FIVENSS
EIVGNAK EIVGNAL FIVENC) EIVANCK FIVGNCL ETVRNAY FIVANAK FIVANAL FIVGOAK FIVENAL FIVENSJ EIVGIGK FIVEOTL FIVHYA
EIVHMAK FIVHMAL FIVHMBY E[VHMAK EIVWMAL FIVIMC) FIVUMCK FIVHMCL FIVHNAK EIVHNAL EIVINRJ FIVHNAK FIVHNAL FIVHNCY
EIVHNCK FIVHNCL FIVHNAD EIVMNAK FIVWNAL EIVANAY FIVHOAK FIVHIAL v EIVIMAS FIVIVAK ETVIMAL FIVIMBY
FIVIMAK FIVINAL FIVINC) EIVINCK EIVIMCL FIVINAY FIVINAK FIVINAL FIVING FIVINGK FIVIVL FIVIOAY
EIVINAK EIVINAL FIVINAY EIVINAK EIVIOAL FIVINCJ EIVINCK FIVINCL 7 FGTGHAY FGTGMRK FGTGMAL FRTGMCY
FGIGMEK EGTGMCL FGTANAY FGTGNAK FRTGNAL FRTGMAY FGTANAK FRTGNAL FCTGNAY FGTGOAK FGTGAAL FGTGOAY
FGTGNAK FGTGNAL FGTENCY FRTANCK FRTGOCL FRTHMAJ FRTHMAK FRTHMAL FOTHMAL FGTHMI) FGTHMCK FGTHWCL FGTWNAJ
FGTHNAK FGTHMAL FGTHNR) FGTHNAK FGTHNAL FGTHNC) FOTHNCL FGTHNAY FGTHAAL FATHARY FGTHOAK FGTHORL FGTHNCY
FGTHACK FGTHACL FGTIMAS FGTIMAK FGTIMAL FGTIMR) FGTINAL FRTINCY X EGTIM.L FGTINAJ FGTINAK FGTINAL FGTINAY
FGTINAK FGTINAL FGTINCJ FGTINCK EGTINCL FRTINAY FGYINAL FGTIORY FRTINAL FETINCK

X EGIGUAL

is probably the favorite language of the artificial-
intelligence freaks (see p.§N12). A fondnesss for
LISP, incidentally, is not idered to reflect

on your masculinity.

FInincy

LISP is a "cult" language, and its adherents
are called Lispians. They see computer
activities in a somewhat different light, as com-

posed of ever-changing chains of things called

This has several advantages. One is
that it can be used for so-called "recursive"
programs, or programs that call new versions

FRUGVAK FGUGMAL EGIGMAY FGUGMAK FGURMAL FRUGHCY FONGMCL FRIGNAY FGUGNRK

of th 1 . § tte FGUGNCK FGUGNCL FGUGOAJ FGHGNAK FGUGOAL FRIGNRY FGHI FOUGNAL FGUHMAK £ G ", " ", " i
into op guess we better FGUMMAK FGUMMBL FGUMMCJ FGUHMCK FGUHMCL FGIMNAY ¥ FEMNAL T3 FOUMNGK EGITMAY, cars" and "cudders," which will not be explained
not get into that. But mathematicians like EGUMNAK FGUMNAL FGIMARS FGUNAK EGIMAL FGUMNCY FOITHOCK FGIN A EGUIMAK EGN) ECITMRY FGUTMAK FRUTMAL FGUTNCY here.
FGUIMCK FGUIIMCL FGUINAY FGUINAK FGUINAL EGIINAS FGHINAK FGHINRL EGUINCY FGUINCK EGIINCL FGUINAJ FRITOAK FGHINAL EGUINAY
it. FGHINAK FGHINAL FGUINCY FAITACK FOIINCL FVAMAJ FGVGMAK FGVGMAL FGVGMRY FAVEMAK FOVOKAL FOVEMCJ FGVRMCK FGVAMCL FGVENAY
FGVGNAK FGVGNAL FGVGNAJ FGVENAK FGVGNAL EGVGNCJ FGVGNCK FGVGNCL FGVGNAJ FGVANAK FGVGNAL FGVGORY FGVGNAK 7GVGNAL

FGYGOCK FGVGNCL FGVHMAJ FGVHMAK FGVMWAL FGVHMAY FGUHMAK FGVHMAL FGVHMCY FOVHMLK FRVAMCL FRVMNAJ FGVHNAK FGUHMAL
FGYHNAK FGVHNAL FGVHNCJ FGVHNCK FGVHNCL FGVHNAJ FGVHOAK FGVHNAL FGVHOAJ FGVHNAK FAVHNAL FAVHNSY FOVHICK FGVHNLL
FGYIMAK FGVIMAL FGVIMBJ FGVIMAK FGVIMAL FLVINCJ FEVIMCK FAVIMCL FCVINAY AK FGVINAL FGVINRS FGVINRK FGVINAL
FGVINCK FGVINCL FGVIOAJ FGVINAK FGVINAL FGVIORY FGVINAK FGVINAL FGVIOCS FGVINCK FGVIOCL FHTGMAJ FHTGMAK FHTGMAL EHTGHRY
FHTGMBK FHTGMAL ENTGMCJ FHTGMCK FHTGNCL FHTGNAJ FHTGNAK FHTGNAL FHTGNRJ FHTGMAK FHTGNAL FHTGNCJ FHTGNCK FHTGNCL FHTGOAJ
FHTGOAK FHTGOAL FHTGOBJ FHTGOAK FHTGORL FHTGNCY FHTGNCK FHTGOCL FHTHMAY FHTHBAK FHTHMAL FHTHMAJ FHTHMAK FHTHNAL FHTHMCJ

LISP was developed by John McCarthy at
MIT, based largely on the Lambda-notation of
Alonzo Church. It allows the chaining of oper-
ations and data in deeply intermingled forms.
While it runs on elegant princlples, most people
object to its i ble par (a feature
shared to some extent by TRAC Language).

Originally this language was called IAL,
for International Algebraic Language, but then
as it grew and got polished by various inter-
national committees it was given its new name.
@ don't know if anyone consciously named
it after Algol, the star.)

Below: Nelles' program to caloulate the date of Easter.
It has gone through several versions. The e is Algol.
Algol 62, the publication language, is one -
thing; Algol 70, the 1970 version, is much
more complicated and strange.

Joseph Weizenbaum, also of MIT, has
- created a language called SLIP, somewhat resem-
. bling LISP, which runs in FORTRAN. That means
you can run LISP-like programs without having
access to a LISP processor, which is helpful.

DATF

T TR EY e
O

FEB 07 197Y

Several versions of ALGOL have gotten
popular in this country. One, developed at
the University of Michigan, is called MAD

hi Algori Decoder); its sy 1 is
of course Alfred E. Newman. Another favorite
(for its name, anyway) is JOVIAL (Jules' Own

GIN' ‘l‘HFG'R' VEARL YEAR?,SURSCRS STARYI INlNTEB‘l(O.VEIQIH
INTNTIGTR (N, YFAR?) S CIFY VFM’T)VFAR? CTHEN' *GOTO* FXIT
SURSCR:zYMAR2-YHAR 1413 . B
IREGINY, P INTEGERY. CURYRGCINT (MyL oA B0l oD oF o FAY,
VINTFGFR® *AGRAY! CASTFR(/1:SUBSCR,1:2/
CINTEGER' *PRNCENURE L. MADIX,Y) 3§ 'INYKGFR" Xo¥3

THEN | TRERE'S ALWADS

MOD:aX-Y&(X1/9Y) 1 CURYRI=VEARLS KAYi=1D | R
Version of I tional L LIE ENT3=CURYR! /10 154CENT-CENT® /? 4= (B4CENT +13) 7/ $257
f the Algebraic guage) , L20N14, 44 CENT-CENT*/ =MON(CURYR,4) 3 B1=MOD(CURYR I3 i

developed under Jules Schwartz (and supposedly i noor7 MOD(CURYR,19)5 D:=194CeM: msnnnm,:n. *3

named without his consulta it S; - L 0002¢ Eia2sA+6%BehnNeLs ExMON(E,LT)S _ L

opment Co; i tion) at System Devel 00022 VIFY Feb 'AND' D=29 'THEN -som- APRL19% l

pmen rporation. 00c23 i YIEY E=6 TAND' D328 YANDY (M=2 'OR' M=5 ~u;- 10 COR*_yi_ _ fi If you feel like making programs run fast,
nen23 M313 MR M=z1A 'NRY Ma2] *OR' M=24 YNR' M=29)'THEN® . —
oon>3 I GOTO' APRLIB: FASTER(/KAV,1/)3=N+E+223 N) - and not take up very much core memory, you go

When IBM announced its System 360 back. orn2s EASTYPIEASTFRI/KAY,2/) :=CIIRYR: #1F' CURYR>aYEAR2 'THEN! K to machine language, the computer's very own

1GNTAY SORT: CURYR:CURYR+1: KAY:isKAY#13 *GOTO' 6O3|| _
in 1964, there had been hope that they "°“ld 00030 APRL1A: FASTER(/KAY 1/ 122403 1GOTO? FASTYR: ;

wired-up deep-down system of commands (see

t the i tional 1 | non32 i APRL19:FASTER(/KAY,1/) $=5C5 $GOTO' EASTYR: __ . P. 52,). It takes longer, usually, but many peo-
20014 SART: PF0PY KA YSTEP® 1. *UNTIL'SUISCR-1 *DO*
end make Algol the basic language of their new 0024 {EQIN' JFORS K:=KAV+D STEPS I' PURTILY SUASCR 200% 1 i ple consider it very satisfying.
. 0003 'IF‘ FASTS (/KIW.II))EA%VFMIK.[/) ¢ THEN'
computer line. No such luck Instead they Rt RO Al F b

Then, of course, if you have a particular

d PL/1 (Prog ge I), a [00035™ " T EASTER(/KAY,1/) 1 =EASTER (/Ke1/)3 o

computer language that was going‘;o be all 00036 b EASTER(/Ke1/):=A3 A=EASTER(/KAY,2/03 style and approach and set of interests, you
g ASTE 2 ASTER(/K,2/)
things to all men. g:g;: EAE\':::;::;;nflrsrm)E.” , will grobably start building up a collection of
200040 - Y YeRoT individual programs for your own purposes.
00c41 QUTSTRING (1.7 (1A, NELLES, 4ATH 280 EASTER TABLES?
In programming style it resembled COBOL, 00042 —NSACT (10157115 1FORS XAY:=l #STEP® 1 FUNTILS sussc) ¢ 507

Then you'll work out simplified ways of
calling these into operation and tying their
results and data together.

but had facilities for varieties of "scientific"
numbers and some good data structure systems.
It is available for the 360 and for certain big
Honeywell computers; indeed, the operating sys-
tem for MULTICS (see p. 45) was written in
PL/I. Whether there are people who love the
language I don't know; there are certainly
people who hate it.

TREGIN': *IF' EASTER(/KAY,1/1<32 'THEN'
ﬂUYSTRqu(l-'('HARfN *)') 'ELSE'
YREGIN® OUTSTRING(Ll, *('APRIL *)*)3

I'ASYF!(/KAV.!I‘t-EASYER(/KAY'l
END T OUTINTEGER(1+EASTER(/KAY,17))'
OUT INTEGER(1, FASTFR(/KAY,2/))3 SYSACTA
END# I SYSACT(1415,1): *END'; *GOTON' STARTS
G(\.’('OllelL"V'l'H SVSAC”I.-IS'U JEND*

Which means you'll have a language of your
own.

32

E)(Lr\ BOTIOl

WORLD BENEN
T%t mcvm‘r‘.\ CANGUAGES.

Every computer is wired to accept a spe-
cific system of commands. When these commands
are stored in the oompuhr'- memory, and the

p # prog: gets to them, they
cause it to d ai by ic reflex.
This is called mwhlno language, the very lan-
guage of the machine achine itself.

In most availsbl the machi
lmgums m bim.ry mnmng composed of only
two . Binary b it's a

i wly of g the ine's struc-
ture; it p to be to a

single eommon torm “of information, and permits

programs to be stored in binary memory. Each
individual instruction or command ordinarily
occupies one memory slot, though some compu-
ters have commands of varying length.

p have diffe hi
but the of all p
are basically similar. Big computers have more
commands, with more variations, and carry
them out faster; but those variations are just
extra ways of saving steps, not qualitatively
different features.

These deep-down operations ARE ALL THE
THINGS THE COMPUTER EVER DOES. However,
in their combinations these instructions can be
woven into chains and diadems of complex actions.

ALL COMPUTER PROGRAMS ARE EVEN-
TUALLY WRITTEN OR ENACTED IN THE MACHINE'S
PARTICULAR BINARY LANGUAGE.

Now, it is entirely possible to write your
programs at this level, considering and arran-
ging rock-bottom commands. This is called

" ing (and "
a little later on).
lndeod. working at this level is very highly
some Others avoid it.
Thio is a very uﬂcul matter of taste and what
you're working on.

Higher-level languages, seen on earlier
pages, have more convenient forms for people,
but must be translated, either ahead of time or
on a running basis, to the bottom-most codes
that make things happen ih the machine. All of
them are built out of machine language. Writ-

ing the 1 that
enact or translate theu higher-level languages,
is considered a black art. (See p.30.)

-

Every programmable device has a "machine
language,” or rock bottom code system that acti-

vates the thing di its p:
responds electrically to thne eodel. and enacts

them one instruction at a time.

True are p: ble devices
that can modify “their own in-tructiona. change
their sequence of operations and do other versa-
tile stuff.

Wht e ¢ ’revfﬂy L

PV

Compuurl are bn!cuuy alike. Ignore their

of bi may
hwe a great dul in common vdth a small blinking
box; indeed, they may have the same architecture,
or structure, and therefore be the same computer.

The structure of p , in their glori
and fascinati £ is called

computer architecture.

(For the architecture of a beginner's com-
puter, see p.33; for the architecture of some
famous computers, see}p.40-3.)

Computer architecture covers three main
things: registers (places where something happens
to informadon), memoriea (places where nothing

to i); their
md machine language, all the bottom-level instruc-
tions (for this last see "Rock Bottom," p. 32).

REGISTERS AND MEMORIES

Computers are made, basically, of two.
things: reEltera and memories A register is
where pp to ion; a memory
is where hi pp to inf ion. Let's

go over that slowly.

A regnur is a place where something
to i tion: the infc ion can be
fhpped around, tested, changed by arithmetic,
or whatever. (We noted earlier that reghtera
are what a to its ies.
They are also prmcipal parts of the computer
itself.)

A memory is a place where nothing hap-
pens to information. A program puts the infor-
mation there, and there it stays till some pro-
gram pulls it out again or replaces it.

A main or general register (often called
the accumulator, for no good reason) is where
the program brings things to be worked on,
tested, compared, added to and so on. There
can be several of them in a computer.

Other registers perform other functions in
the p ; a given p s design, or archi-
techture, is largely the arrangement of registers
and the operations that take place between them.

The reason we don't just have all registers--
and no memories at all-- is that registers tradi-
tionally cost more than memories. (However, some
machines are being tried that have all working
registers instead of memory. See STARAN, p.U3.)

Memories come in all sizes and speeds.
So lots of computers have big slow memories,
such as disk memories, along with their small
fast memories.

A memory i of holdi
places or storage locations, each holding one
standard piece of information for the computer,
a word having a specific number of bits (see p.

.) We must stress: a "COMPUTER WORD"
HAS NOTHING TO DO WITH ENGLISH WORDS OR
ALPHABETICAL CHARACTERS. The term refers
to a specifi dard memory slot,
having a fixed number of bit positions.

One important reason for this standardiza-
tion is that each holding place, or memory loca-
tion, can be given a number or address. If
every slot in the memory has an address, infor-
mation can be stored in specific places:

Regshr

Lockron, ' [3esex 000 *RX]

and gotten back out of specific places:

X GOX OX0PO XXX

Locaron 18

A core memory has a definite rhythm or
cycle,” into which it divides the passing time.
The memory cycle of a core memory is so im-
portant that its duration is often called the
cycle time of the comter. A request to the core
memory made at the beginning of the cycle
is honored at the end of the cycle. Core cycles
are very fast, being these days about one
microsecond, or millionth of a second.

A core memory can only perform one act
(store or fetch) during one memory cycle.

Core cycles during which nothing is
requested of the memory simply go by.

One last point about core memories. The

ber which specifies an to the mem-

ory is a binary pattern-- just like all the other
information (see "Binary Patterns," p. 33).

(Or more exactly, whatever binary pattern is sup-

plied to the memory as the address to store or
from which to fetch, that pattern will be treated
as the address to store or from which to fetch,
that pattern will be treated as a binary number
whether it was supposed to be or not. It could
be the alphabetic word GRINCH which got there
by mistake (see "Debugging," p. JO), but the
memory will treat it as an address number and go
to the address specified by that pattern.

THEN WHAT ARE THE DIFFERENCES
BETWEEN COMPUTERS?

The word length
(number of bit-spaces in a main
register and memory slot)

The number of main registers
and what they can do; i.e., how
they are set up and what operations
can take place in and among them;
ie.,
the Instruction Set (see nearby);

The amount of memory;

The accessories or peripherals;

The cycle time.

6\0&@,%

Here's the computer, then, in all its glory:

a device with a symbolic program, stored in a
memory, being stepped through by a program
follower.

The commands of the program cause the
program follower to carry out the individual
steps r d by each

of the program.

> AMENTAL
OPERNTION'S
oF cpwwegs

A GREAT MYSTERY
15 ABEUT To VNEOLD.,

YOUR BASIC COMMANDS, NOW

(Computers exist which do little more than these,
and yet they can in principle do anything
fancier computers can do.)

TO BE SHOWN: The following are the rock-bottom
basic operations of computers, available as
specific instructions in all computers (with
some variation).

The first seven listed below will be
used in the extended example in the next
spread.

LOAD a binary pattern from core memory to &
main register.

STORE a binary pattern in core memory from a
main register.

SEND OUT ("OUTPUT") a binary pattern to an
external device.

BRING IN ("INPUT") a binary pattern from an
external device.

ADD TWO binary patterns together. (This
causes them to be treated as numbers,
whether they were to begin with or not.)

JUMP--
Go to another part of the program
and forget you were here.

TEST TWO binary patterns against each other,
and branch or not in the program depen-
ding on the result.

NOT TO BE SHOWN Here are tha rest of the

utterly fund of 8.
(These are not used in the forthcommg
example.)

TEST ONE SPECIFIC binary pattern, and branch
in the program depending on the result.

SET AN ACCESSORY IN OPERATION/TURN IT OFF.

REVERSE (or "COMPLEMENT") a binary pattern--
changing all the X's to O's and vice versa.

SLIDE (or "SHIFT") a binary pattern sidelong
through a register.

FLIPPER (or "LOGICAL") operations between two
binary patterns, especially--

OR (or "INCLUSIVE OR" or "IOR")--
result is an X where either
original pattern was an X.

AND (or "MASK")-- result is an X
only where both original pat-
terns had an X.

FANCY OPERATIONS
The f are i but not

stricuy necenlry and many computers, es-
pecially minicomputers, don't have them all.

SUBTRACT. (Can also be done if necessary
with combination of adds and flips.)

MULTIPLY. (Can also be done if necessary
with combination of adds, shifts and tests.)

DIVIDE. (Can also be done if necessary with
combination of subtracts, shifts and tests.)

MORE FLIPPER ("LOGICAL") operations:

XOR- (or "EXCLUSIVE OR")-- result
is an X only where one pattern
had an X, but not both.

NAND-- reversed AND.

NOR-- reversed OR.

SUBROUTINE JUMP--
"Go to another part of the program
but ber this place b you'll
be coming back on your own."

RETURN FROM SUBROUTINE--
"Go back to wherever it was in the
program that you last came from."

PUSH (on Stack machines only, see p.)--
take a binary pattern and put it on top
of the Stack.

POP (on Stack machines only, see p.)---
take whatever binary pattern is now on
the top of the Stack.

ADD ONE (or "INCREMENT")-- (Useful when
you're counting the number of times some-
thing has been done.)

SUBTRACT ONE (or "DECREMENT," not "excre-
ment")-- (Also useful when you're count-
ing the number of times something has beer
done.)

ASTRONOMICAL/INFINITESIMAL ARITHMETIC (or
"FLOATING POINT" arithmetic)-- operates
on a certain number of Significant Digits
and keeps separate track of the decimal
point-- actually a Binary Point, since it's
rarely if ever done decimally.

=»Very important in the physical
sciences.

Almost any operations can be "built in"." The
sky is of course the limit, since any elec-
tronic operation can be added to a compu-
ter's instruction-set if desired-- say, "turn
on the electric blender" or "multiply quat-
ernions"-- but the former is more easily
done as an output instruction, and the
latter as part of a program.

THE ROCK BOTTOM PROGRAM FOLLOWER

How, you ask desperately, does this inner-
most program follower work? The one that is
built into the computer?

Aha.

Basically it consists of two specific regis-
ters, the Program Counter (usually abbreviated
PC) and the Instruction Register (usually abbre-
viated IR), and other electronic stuff, loosely
termed "decoding logic."

(Since we are already visualizing the
program follower as a little hand, let's think of
the index finger as the program counter and
imagine that the thumb can flip an instruction
into a little cup, the Instruction Register or IR.
What the heck.)

WHEN a prog is set into operation, the
binary pattern specifying its first in
memory is put into the program counter.

Then the instruction at that address is
fetched to the program follower (that is, put in
the instruction register), decoded and carried
out.

THEN THE PROGRAM COUNTER AUTOMAT-
ICALLY HAS ONE ADDED TO IT, SO IT POINTS
TO THE NEXT INSTRUCTION.

The instruction pulled from memory is
held in the command or instruction register
and there decoded by the system's electronics.

It is of no concern to the programmer how
this is done electronically. (And indeed elec-
tronics is g of little to
people, unless they are trying to design ot op-
timize computers or other devices themselves.
Indeed, the el i i are
changing.)

All we need to know is that an electrical
decoding system (called the logic circuits) carries
out the specific instruction-- for instance, by
shutting off the path to the .memory, turning on
the adding circuit, and opening paths through
the adding circuit and back to the main register.

Now that the program counter holds the
number of the next instruction it in turn is
accordingly fetched and executed.

And so it continues.

When an instruction calls for a jump or
branch in the program, what happens?

The jump command causes a new number
to be stuffed into the program counter, that's
what, and so that's where the program goes next.

ALTERNATING CYCLES

Many instructions tell the program follower
to take a data word (also a binary pattern) from
memory and put it in a main register or vice
versa.

Such an instruction is translated by the
decoding logic into a request to the memory.

Since a core memory can only do one
thing during one of its cycles, the next instruc-
tion in the program cannot be fetched until the
data has moved to or from the memory.

Thus in many types of program the cycles
alternate:

Instruction cycle (fetch the next)
Data cycle

(data goes to or from memory),
Instruction cycle,
Data cycle,

and so on.

Somehow
LOADING, STORING,
MODIFYING
AND TESTING
BINARY PATTERNS
DOESN'T SEEM
TERRIBLY FRAUGHT
WITH POSSIBILITIES;
but the i and
make chess look like tic-tac-toe.

And part of the power, of course, is in
the great speed, the teeny fraction of a second
each step takes; five hundred operations yet
take only about a thousandth of a second. So
no matter how intricate the enactment to which
these tiny steps are built, it still happens
awfully fast.

A » then, i just
of certain plucel to work on information (main
registers), certain places to keep it the rest of
the time (i ies), certain p ys and inter-
connections between them, an instruction-set
having certain powers whose instructions can be
operated on out of memory, and a program fol-
lower that carries out the instructions of that
instruction-set.

INSTRUCTION-SET.

The system of command patterns
designed and wired into a particular computer,
each with its exact results.

(The instructions in the set are the vocabulary
of a machine language.)

A NINd-UP
CROSSWIORY PUZZLE

We look at last at what really happens
inside a given computer. It must be a specific
computer because there is no single inner lan-
guage for all computers. For simplicity's sake
(ike most introductory texts) we hereby pre-
sent a fictitious machine,

L4
* FIDOx»
(Faithful Instrument, Domesticated and Obliging) .

The FIDO is a twelve-bit machine. The
main register (it has only one) is twelve bits
long, and every memory slot is twelve bits long.

Every instruction is twelve bits long;
every data word is twelve bits long, though of
course much longer pieces of data can be put
together by taking more than one twelve-bit
word

Some instructions of the FIDO
listed in a nearby box. The instructions of
FIDO are of two types: plain ones that just
the main register (like CLEAR), and the
divided ones, which select a memory slot or
output device. On the FIDO these are divided
into an operation code (opcode) of five bits—-
the bits that tell the program follower what the
operation is.to be; and an address of seven
bits, specifying which memory slot (or external
device) is to be operated on.

are
the
use

These seven bits allow exactly 128 differ-
ent patterns, (from 0000000 to XXXXXXX),
which means we can select among exactly 128
different memory slots. (See Binary Patterns,
P-33) (Ml

- The Fido comes with one row of lights
and switches; the row of lights can show the
of any ifl g register or
memory slot. When the computer is stopped,
tl;h is helpful for debugging programs (see p.
0.)

Ah, if only we could tell you all about the
FIDO here! Its many more instructions. The
option bits in the commanda that allow fancy
variations, or the option bits in the interfaces,
spoken of earlier, which allow the program to
give different commands to external devices.

But let's get on with a program for the
FIDO. Thrill to the pulsating rhythms of...

w1 2ISTW
goekrs WRS

BINARY PAYTERNS

are what the computer operates on deep down. "Binary"

just means that only two symbols are used (just as

"decimal” means that ten symbols are used). Patterns
of binary symbols happen to be electrically convenient,

80 that's how computers are built, but that would
change if some more convenient set of symbols came
along.

Binary patterns are very. systematic and eesy
to deal with. Consider the number of b

,v‘u.v‘uv.uvu

~ .."Cu.uauuaa.u.vu'uvuua.vv.ulu.t.t‘.l.“’.u...‘...a.Ou.uua.'v..-.‘.uuocl-.v.‘v.-a.‘..-......v.d

inary symbols
you can have in just four spaces. #LET'S USE THE
LETTERS X AND O, AND PUT THEM IN ALPHABETICAL
ORDER, SO YOU'LL SEE THAT WE'RE TALKING ABOUT
PATTERNS, RATHER THAN NUMBERS .

0000

XX 0O O ol xxxoo

M OOMXOONXNXO Ofx X
OMOXOXOXOXONXO

]
=
>

You can see that the pattern repeats in certain
interesting ways. Each column repeats itself as you
read down; adding a new position to the left doubles
the number of possible patterns you can have in the
row.

These are the infamous "bits" you have heard
of. As you can see, there is hard or compli-
cated about them. The number of bits in a thing
are the number of spaces which can be either X or
0.

Now, the most basic fact about any computer
{s its word length: that is, the number of spaces
in a standard memory slot of that computer.

£2-bit cwpder wevd

6 - L\ cm & W

A "13-bit computer” (uxe the PDP-8) has memory
‘words that are al] twelve bits long. A "16-bit
computer” (like the PDP-11) has memory words that
are all 16 bits long.

ocstes || Soit '
pRE——_ L
Joratom, Rimereolt, b

BASIC INSTRUCTSAS oF THE FIlD COIMPUTER.

Fr o revelskon & § Seoret Hed-#), See Below.

(Binary Binary
pattern pattern selecting
selecting where to perform
operation) operation)
/ OPCODE ADDRESS
5»‘@ 7z for

XXXXXo0000000
v
don't matter

00X00o0000000
N~/

address goes here

OXX0Qoooo0o000
o~

address goes here

XX000Oo0000000
address goes here

XX00Xo000000o0,
-
address goes here

X0X00o0o000000
e~

address goes here

O00O0OO0OXo0co000000

address goes here

Smal ;.

OPERATION CALLED FOR

CLEAR AC
This instruction causes the AC to be
filled with serces.

ADD (from memory to AC)

This adds the contents of the speci-
fied memory location to the contents of the
AC. Result remains in the AC. Whatever
was in the memory before is still there.
This instruction is also used to bring a
new pattern to the AC, copying it from the
specified memory location; but you have to
CLEAR the AC first, so you're adding it to
zero.

STORE

This instruction copies the contents
of the AC to the specified memory location.
Whatever was in the memory location is
destroyed.

Whatever was in the AC is still there
too.

INPUT*
This instruction copies the contents
of a specified device register to the AC.

OUTPUT*
This instruction copies the contents
of the AC to a specified device register.

JUMP

This instruction makes the program
follower take its next instruction at the
specified address and go on from there.

TEST, SKIP IF EQUAL**

This is a common test instruction,
permitting the program to branch depen-
ding on various conditions. The contents
of the AC are compared with the specified
core memory location. If they are not the
same, the program continues and takes the
next instruction in the normal fashion. IF
the two patterns are the same, the pro-
gram follower SKIPS the next instruction
and goes on to the one after.

Whatever the next instruction is,
then, determines the course of events
if the two patterns turn out to be the

y

AR R R AR R AR RS R R R AR RN AN AR R R R R AR R R R R R A R R AN AR AR AR AR R AN ARNNANANARR AR AR AR R AR

«

same. :

«

For instance, that middle instruc- *«

tion can be a JUMP instruction, taking s

the program to a whole nother part of =

core memory and a new series of events. :

these ing «

ructio, :

10 protect eha have been changeq «

N does nop :::: Gou), M

on th, «

can't go ing, here wider hoice, h: :DP 8 o
Packing Makes the s@hitticﬁled i °h we :
con.id,ﬁ"' its e PDp- remar truction- :

ARAARNRR NI R AN AR RAARNNRR IR N

Actually computers with small word lengths
like these are called mi

kab];
2-bit word Jep,

The big.point is,

AT THE BOTTOM PROGRAMS ARE

have much bigger word lengt‘ht. The IBM 366
has a 32-bit word length. The Control Data 6600
has a 60-bit word.

Now, it is an interesting fact that not only
are computer memories divided up into slots, or
locations, of equal length,

but each of thcse locations has. an address, that
is, a number by which the contents of the location
can be found. And these numbers are binary.

Many forms of information are kept in binary
patterns which are not numbers. For instance,
letters of the alphabet are usually stored as 8-

bit patterns.
[x[x[o]x[o[o[o]x |

THE LETTER "Q"
(N ASCIl CODE)

All computers can
in principle do
the same things,
some faster.
However, some are
too slow or too small
ever to do what others can,
though the types of their
operations are similar.

Some computers (and their
languages and facilities)
are much more convenient
for programmers than others,

their i

are better.

This is no small matter.

(But it's a big matter of
taste and argument
among computer people.)

-

AND DATA IS BINARY,

'::’ﬂ'"f KRR RRARAR RN RN AR NN RN

BINARY

since it's all stored in binary memory.

But since that suits few people's individual

purposes, we build up HIGHER LANGUAGES AND

DATA STRUCTURES. So that different users

deal with

better and more conveniently to the structures

that interest them.

33

If you want information on the machine
guage and guage of any given
ine, write the £ for the pro-
gramming manual. There may also be a
pockst card.

INSTRUETION [AYouT

An oocult aspect of computer design is the
matter of how to pack into the so-many bits of

. an instruction word all the options the programmer

should have.
N5 d
s o MdReSs 81T
ortvew
NS A
[| KT . |

Lquk of omplote mifructio,

For no particular reason the instruction
select bits are usually on the left, the address
bits on the right, and option bits (no room for
them in this book, unfortunately) in the middle.

The number of bits in the address deter-
mines the number of places in the memory that
the programmer can choose among. 15 bits in
the address means a choice of 32,768 memory lo-
cations. 7 bits means a choice of only 128.

(See "Binary Patterns,” p. 3% .)

a P has more than
one instruction layout.

Deciding what the i layouts are
to be hinges on the architectural design of the
computer (see p.J1) and the instruction-set.
It all gets worked out together.

It's ultimately a matter of design elegance,
but the consequences are very concrete. An
elegant instruction-set is easy to use and there-
fore saves a lot of time and money. (Anyone
interested in studying the matter might want to
compare the PDP-11, a 16-bit computer with a

iantly instr t, with some
other 16-bit computer.)

GUESS WHAT!

The FIDO is nothing but a stripped-down
version of that beloved family pooch of computerdom,

Yie PDP-§.

(Described p .\'o)

If you buy a PDP-8 from Digital Equipment
Corporation, you get all this and more. (Except
for the external devices.) And the PDP-8, of
course, allows much bigger memories than 128
slots, but that's too complicated for here.) Arf.

This brings up some interesting facts.

CERTAIN NUMBERS ARE SPECIAL because
they are the number of things that can be specified
by a certain number of bits.

Special number
2 one bit a
4 two bits jward
8 three bits o
16 four bits
32 five bits %
64 six bits (== e
128 seven bits
256 eight bits ele.
512 nine bits
1024 ten bits

("ONE K" is 1024; memories and everything

However, we will have to stop using these
X's and O's. It's not really done, so we will

else come in K's, or multiples of 1024.)

A lly the term "Kk," standing for "kilo-," should

switch to the more usual way of writing binary
patterns with 1's and zeroes. (Apologies to
who hate numbers; but that these

while we may write them out as 1's and zeroes,
may rej nt wholly non-numerical kinds of
h!orm-tian.) That means the letter Q is

but it's still the letter Q.

Of course, bits may also represent numerical
information. And so we pass on to

BINARY NUMBERS.

These are the same old binary patterns,
but when we decide to treat them as numbers,
they are binary numbers.

Let's count. Note that these are the same
combinations of bits as before, merely put in the
more usual notation.

decimal number binary number
0 000
1 001
2 010
3 011
4 100
5 101
6 110
1 m
08 1000
09 1001
10 1010
1 1011
12 1100
13 1101
14 i110
15 11

As you observe, the higher numuers need more
and more bits to hold them.

mean one thousand, and the term BK, or Binary K,
1s used by fussy people to stand for the very important
nearby number 1024. But computer people generally
use expressions ending in K for the following special
numbers:

THAT'S HOW MANY

NUMBER COMBINATIONS FIT IN
2048 ("2K") eleven bits
4096 ("4K") twelve bits
8182 ("8K") thirteen bits
16,384 ("16K") fourteen bits
32,768 ("32K") fifteen bits.

Above this number they increase very fast, and
we generally have to look them up, but the idea is
this: the number of bits used to select something
limits the number of things you can select among.
For instance, if you have a computer memory with
32K different locations, you need fifteen bits exactly
to specify a location in memory .

Here are some ramifications:

o The word length of a computer determines
how large a number it can hold. A computer with
a twelve-bit word can only hold a number up to
4095 in one memory location (since we use 000 000
000 000, the first combination, to stand for zero);
if we want to use longer numbers we have to set
aside two or more word locations per number. (A
16-bit computer can hold a number up to 65,535 in
one memory location.)

¢ In designing data structures, if you use

binary codes (rather than, say, alphabetical characters),

you have to allow enough bits for all the alternatives
that might turn up.

¢ In the design of the wired-in instructions
for a computer, therefore, the number of bits set

aside to specify an ad in core h
that instruction can select from the whole memory.
or just a part of it.

34

MK?} W 'STW ATC& EQUIPMENT SETUP FOR THIS PROGRAM. 1“3@ ﬁ}m\

MNIN RIS TER . ACCUMULATD

COUNTING CLoek

Device ¢~' (;kaﬂk)

device bevicc Pevice bevie

10 HIRE

There is a certain folk hero whom the
people all call Bucky. It is said that he wears
three. wristwatches: one for where he is now,
one for where he will be next, and one that
tells what time it is at his home.

D00
bevicg peEwx 3 vIce

& 7 b
b o

XXXXX oveesss
PPAIOPII

Well now. Here's an example of a little
problem on which to try our FIDO computer.

bi c device DEVIEE pevice

TER-H. TAAR. Mo
DTS ;l’;"’; DTS gty

Let's wire up a magic wristwatch for
Bucky the Folk Hero, one that will use a teeny
FIDO on a chip (the coming thing), attached to
three rows of numerical readouts (like those
on pocket calculators).

This application is not so absurd as you
might think.

It is obviously quite simple in principle.
It will let us see some of the ways that

-bof machine languages of computers . .
:lll': :z:l; om suoe i Anyhow, what the program is really doing,

ABSOT Yy w:;« RFUL

testing whether the rightmost digit is a nine.
4™

(It only has to test one, since minutes are the
Naturally this got saved for last, and

same round the world.) If it's not nine, it
what is presented here shows it.

Note that in this flowchart

AeJl

just adds one to each-- a part of the program
called ADMIN, starting at XXO OXO. If it's
nine, however, it sets the final digits all to
zero, and then tests the tens digit to see if it's
a five, meaning the end of an hour. (The num-
ber five has been ingenuously stored in a loca-
tion which Mike has called FIVE, which assem-
bled to slot number X OXO OXO. If you look
there, you will see that the slot does, indeed,
contain the binary pattern for the number 5‘)

means, "stuff the number 3
into the variable A." A
variable is a named location
in core memory.

The example was meant to be a case of
not-very-numerical programming that would
show the abstractness of it all. The program
itself has no intrinsic quality related to the
problem; that much should be visible. What a pity there is no time to take you on
a guided tour of this profound, magnificent pro-
gram. If you dig this sort of thing, however,
you might just be able to dope it out.

Anyhow, I programmed this myself a few
weeks ago in the FIDO language, and was very
pleased with it, but then discovered a couple
of appalling bugs. As time closed in on this
project I asked my friend Mike O'Brien to code
the program, and he kindly consented, taking
time out of his previous weekend plans. Here
is Mike's program, for which I am grateful.

Anyway, you've had your taste. Hope you
want more.

La!T Z't”:j:l}
ol Suslehy
are, TLQ Sawg :
cheek The

Ly‘f' watel
&let T 4
for a[‘ 3

HowEVer, after it was set in type, Mike
realized that it too has some gross flaws and
would not work as here presented. We thought
of having a chocolate chip cookie contest for
corrections, ding out chocol chip ki
to entrants fixing it up, but we don't have
such a computer and we wouldn't run the pro-
gram if we had one anyway, so see if you can

get the basic.idea of it, and if you are a real Vk[ess
wise guy fix the program for your own satis- we've ,{r
faction, and that will be that.

3wt hoor.

The basic idea is that we have a FIDO,
presumably on a single integrated circuit chip,
attached to thirteen external devices (or periph-
erals, or input-output devices, or I/0 devices
or whatever). These devices are a timer or
clock, which reaches zero once per minute--
this is a computer clock, meaning a timer, not
something that people can read-- and the three
rows of numerical readouts that are thé desired
Superwatch.

For simplicity's sake we here that
each numeral is interfaced to do either input or AdD 1 to
output; thus the FIDO computer can ask any
given numeral what it says, and change its con-
tents.

Mike 0'Brien's
slightly disgruntled
postseript to the program.

The finished Wristwatch is going to give
time on a twentyfour-hour basis, not twelve, like
at NASA and suchlike places. After 12: 59 comes
13: 00. After 23:59 comes 01: 00.

Woopg,
01:00
afee, Shoy
2 it ’;”591.d e
3;:3:: th:h?t :t d;:'a i cll"ck
110y T tha, cORd 4k, 5 b
It g gy 209105 9 ppt for u
(2they oughy Lrop 18 1s
caeanipy a0 g #2UE Inc:e ¥Ning
i A br, Oding x.zhe"t.l
be@n ue " °9'am Q"Ioz-'- Y,
th""ght Stepg f“ils &
So o tha 5, S0
somg %% begy "0 4
of the,n utho see, device Ny q N’J\)l\ow
. uh, hepy hep Ck&cks are
revfwmm\
The bulk of the program is occupied with o ‘l‘ 3
testing the numerals and changing them. How- watehes b
ever, in proportions of activity, the poor thing e same
is going to spend most of its time saying, "Is bewice
it time yet? Is it time yet? Is it time yet?" N+t deviee N « I°°F‘
(That's the second, third and fourth instruction.) =27 1 I——
Because the FIDO selects the particular N°T! mf
input-output device with the last seven bits of N e wom ber
an input or output instruction, this has been Say whock
done with "address modification” arithmetic: o\mu’zv(
creating an output instruction to address a par- \ook ng ot
ticular device by adding the instruction to the W '..
name of the device. This is an ancient and Jeuice N
honorable programming trick. 5 s actal
contenty,
In several cases, the program chooses a
device to examine, or fill, by taking a blank (MOT{ Toat
input or output instruction (kept at locations fhe Vavislfe
X OXO XOX and X OXO XXO, respectively) and ¢alled i
adds it, in the AC, to a counting number that lveg

is being used to step around in the array of
numerals. (This counting number is "N,"
stored in location X OXO XXX.) (These instruc-
tions were put into the slots in octal form, as
"6PPPB" and "628PB" respectively. The slash
are meant to distinguish zeroes from Ohs. The
"B" at the end (in the assembly listing) means
that the is supposed to t 1 these
numbers to Binary, taking them three bits at a
time: 6 § # p comes out to XXO 000 000 000.)

e focat,on
XoXoxxy —_

re next Pege)

This is what the program looks like in the
computer's core memory. (A printout
like the_following is called a machine-
 language listing.)

Since all the addresses are filled in, this
program is said to be in absolute
binary. If they weren't filled in, it
would be called relocatable binary.

Machine-language listings come in different
flavors. A binary listing (or dump)
is generally in ones and zeroes. An
octal listing groups the bits by threes
and substitutes the numbers zero
through seven for the different com-
binations of three bits. The other
main kind, the hexadecimal listing
or dump (an IBM thing), groups the
bits by fours and substitutes the num-
bers 0-9 and the letters A to F, for
the sixteen different combinations of
four bits.

sy Westustel,
Mﬁ’ w BINNCY

wpgess CUENTS

“ L ’:
slof-a0. s e 18
(J:t «207) -lurm rlm‘a ﬁ'.."!.,w))
—~— A
CORE MEMOR
000 XXXXX0000000
00X XX0000000000
0X0 0000XX00XX0X
OXX X0X00000000X
X00 XX000000000X
Xox 000OXXOX00XX
Xx0 X0XO000XX00X0
XXX XXXXX0000000
00X 000 XX00X000000X
00X 00X XX00X0000X00
00X OXO0 XX00X000X00X
00X OXX XX00000000X0
00X XO00 0000XXOX00XO0
00X XOX XOXO00XXOXXX
00X XXO XXXXX0000000
00X XXX XX00X00000X0
0X0 000 XXO0X0000XX0
OXO0 00X XXO0X000X0X0
OX0 OXxo 00XO0OXOXOXXX
0XO0 OXX 00XO00XOX0X0X
0X0 X00 0XX000X0000X
OX0 XOX 00X00OXO00XXXO0
0X0 XXO OXX000XO0OXXX
OX0 XXX OXXO00O0XXXXX0
OXX 000 XXXXX0000000
OXX 00X 00X00X0OXOXXX
OXX Oxo ‘00XOOXOXOXXO
OXX OXX OXX000X0OXX0X
OXX X00 O0XX000XX0000
OXX XOX OXX000XXXX0X
OXX XXO 00XO0OXO0XXXO0
OXX XXX ‘OXX000XOXOXX
X00 000 0XX00X000000
X00 00X 000000000000
X00 O0x0 0000XXOXO00XX
X00 OXX XO0X000X00X0X
X00 XO00 XOXO00XXXX00
X00 XOX 0000XX0X0000
X00 XX0 XOXOOOXOXXXX
X00 XXX 000000000000
X0X 000 O000XXO0OXXXX
X0X 00X XOXOOOXOXXXX
X0X Qx0 XXXXX0000000
XOX OXX : Q00000000000
XOX X00 00XO0XO00XXXO0O
X0X XOXx Q00000000000
XO0X XXO X0OX00X00000X
XOX XXX ‘00XOOXOOXXXO0
XX0 000 000000000000
XX0 00X X0X00X00000X
XX0 O0xo ‘00XOO0XO00XXXO0
XX0 OXX XX00X000000X
XX0 XO00 XX00X0000X0X
XX0 XOX XX00XO000X00X
XX0 XXO0 XOX00000000X
XX0O XXX 00X00000XXXO0
XXX 000 XX00X00000X0
XXX 00X XX00X0000XX0
XXX OXO0 XX00X000X0X0
XXX OXX X0X00000000X
XXX XO00 XXXXX0000000
XXX XOX 000000000000
XXX XXO0 000000000000
XXX XXX 00XO0O0XO0XXXO0
X 000 000 000000000000
X 000 00X XXXXX0000000
X 000 OXO0 ‘O0OXOOXOXOXXX
X000 OXX 00X00X0X000X
X000 X00 - ‘0000XXOX0X00
X 000 X0X XOXO0X00XO0XX
X 000 XXO XXXXX0000000
X 000 XXx O0X00OXOXOXXX
X 00X 000 00X00X0X3000
X 00X 00X OXXOOXOXOXXX
X 00X OX0 X0X00000000X
X 00X OXX OXXOOXOXOXXX
X 00X X00 XOX0000X00X0
X 00X - XOX 000000000000
X 00X XXO 00000000000X
X 00X XXX 0000000000X0
X 0X0 000 0000000000XX
X 0X0 00X 000000000X00
X 0X0O OX0 000000000X0X
X 0XO OXX 00000000X0X0
X OX0O XO00 00000000XXXX
X OX0 XOX XX0000000000
X 0X0 XXO0 XX00X0000000
X 0X0 XXxx 000000000000

\F THIS 90K
FORMIDABLE,

This is what the program looks like when
you set it up for the Assembler,
which is the easier way.

A program laid out like this is called an
A

Listing. ying it may
help you debug (see p. 30).
An easy-t ber alphabetical code is

used to represent each final instruc-
tion desired. Such an abbreviation
is called a mnemonic; usually they're
more cryptic. The mnemonics are
turned by the assembler into the
binary opcode.

You don't have to know the actual addresses
in core memory, you just use alpha-
betical names or labels, and the As-
sembler figures out where they really
g0 and puts in the binary addresses.

Desired numbers, such as 9, are plugged
into the address parts of instructions.

YOUR OWN COMMENTS (here set off with
slashes) can stay here too.

In this FIDO example, the Assembler foilows
two practi it i
a label because it ends in a comma,
and i a b it
begins with a slash.

35

Mé:' k)'t#"'&‘(d\ w o
ASSEMBLY (ANGUAGE

LABELS cp

ey
4 ',%3“' (’"ﬁena«my

START, CLEAR
CHKCL, INPUT §

P 4

/CLOCK IS 1/0 SLOT #0000000.

TEST ZERO /A NEW MINUTE?
JUMP CHKCL /NO, CHECK CLOCK AGAIN.
INPUT 1 /YES, READ MINUTE SLOT OF 1ST WATCH.
TEST NINE /IS IT A 9? ‘
JUMP ADMIN /NO, GO TO MINUTE INCREMENTER
CLEAR /YES, SET EACH
OUTPUT 1 /TEN-MINUTE DIGIT
OUTPUT 4 /TO ZERO.
OUTPUT 9
INPUT 2 /CHECK TEN-MINUTE DIGIT.
TEST FIVE /NEW HOUR?
JUMP AD2TEN /NO, GO TO TEN-MINUTE INCREMENTER .
CLEAR /YES, SET EACH
OUTPUT 2 /TEN-MINUTE DIGIT
OUTPUT 6 /TO ZERO.
OUTPUT 10
ROUND, ADD N /GET CLOCK-NUMBER COUNTER
ADD INPUT /AND FORM INPUT INSTRUCTION
STORE IN1 /PUT IT WHERE IT BELONGS.
ADD ONE /FORM OTHER INPUT INSTRUCTION.
STORE IN2 /PUT IT WHERE IT BELONGS.
STORE IN2P1 /HERE TOO.
CLEAR
ADD N /GET COUNTER AGAIN.
ADD OUTPUT /AND FORM OUTPUT INSTRUCTION.
STORE OUT1 /PUT IT HERE WHERE IT BELONGS.
STORE OUT1P1 /AND HERE.
STORE OUT1P2 /HERE TOO.
ADD ONE /FORM OTHER OUTPUT INSTRUCTION.
STORE OUT2 /PUT IT WHERE IT BELONGS.

STORE OUT2P1

/HERE TOO.

IN1,p /BECOMES "INPUT N"
TEST NINE /1S HOUR DIGIT A 9?
JUMP PAST /NO, TEST AGAIN
JUMP AD10HR /YES, GO FLIP 10-HOUR DIGIT
PAST, TEST THREE /1S HOUR DIGIT A 3?
JUMP INCHR /NO, GO INCREMENT HOUR.
IN2,§ /BECOMES "INPUT N+1."
TEST TWO /IS TEN-HOUR COUNTER A TWO?
JUMP INCHR /NO, INCREMENT HOUR NORMALLY
CLEAR /YES, IT WAS 23:59, SO SET
OuT2,$ /TIME TO $1: 8. "OUTPUT N+1" IS HERE.
ADD ONE /SET AC TO 1.
OUT1,$ /AND "OUTPUT N" HERE.
JUMP INCN /GO INCREMENT CLOCK-NUMBER COUNTER
INCHR, ADD ONE /ADD 1 TO HOUR
OUT1P1,p /BECOMES "OUTPUT N".
JUMP INCN /GO INCREMENT CLOCK-NUMBER COUNTER
ADMIN, ADD ONE /ADD 1 TO MINUTE DIGIT.
OUTPUT 1 /AND PUT IT
OUTPUT 5 /IN ALL
OUTPUT 9 /THE MINUTE DIGITS.
JUMP CHKCL /THEN GO BACK TO CLOCK-WATCHING.
AD2TEN, ADD ONE /ADD 1 TO TEN-MINUTE DIGIT
OUTPUT 2 /AND PUT IT
OUTPUT 6 /IN ALL
OUTPUT 1§ /THE TEN-MINUTE DIGITS.
JUMP CHKCL /THEN GO BACK TO CLOCK-WATCHING.
AD1#HR, CLEAR /FIRST CLEAR
OUT1P2, § /HOUR DIGIT (BECOMES "OUTPUT N")
IN2P1, § /THEN GET TEN-HOUR DIGIT
ADD ONE /AND ADD 1 TO IT.
OUT2P1,$ /BECOMES "OUTPUT N+1",
INCN, CLEAR /ROUTINE TO GET NEXT CLOCK NUMBER.
ADD N /ADDING FOUR TO CLOCK NUMBER
ADD FOUR /TAKES US TO NEXT CLOCK.
TEST FTEEN /HAVE WE RUN OUT OF CLOCKS (N=15)?
JUMP STORN /NO, GO STORE N AND RETURN
CLEAR /YES, SET
ADD N /N=3
ADD THREE /AND RETURN
STORE N /TO START OF PROGRAM
JUMP CHKCL /(WE'VE DONE CHECKING CLOCKS).
STORN, STORE N /STORE NEW CLOCK-NUMBER COUNTER
JUMP ROUND /AND SERVICE NEXT CLOCK. END OF MAIN PROGRAM.
ZERO, § / THESE ARE CONSTANTS.
ONE, 1
TWO, 2
THREE, 3
FOUR, 4
FIVE, §
NINE, 9
FTEEN, 15
INPUT, 66#$B /RAW INPUT INSTRUCTION. (OCTAL)
OUTPUT, 62#§B /RAW OUTPUT INSTRUCTION. (OCTAL)
N, 9 /COUNTER FOR WHICH CLOCK WE'RE ON.

A=y Tt

TRY OVER HERE,

“THIS COPPER MAN IS NOT ALIVE AT ALL"

Tark God for
THE RSOABLR_

Ten minutes after starting to program in
Machine Language you will probably want Assem-
bly Language.

It's a pain trying to get all the ones and
zeroes right. (Exes and Ohs 1 e tx»*\e' Sawme '-l\:y)

It's a pain trying to keep track of binary
numbers for where things are stored.

SO: let's give them alphabetical names.
That's assembly language. (And the conversion
program we put our alphabeticals into, to turn
them back into the binary patterns that really
run the machine-- that conversion program is
called the Assembler.)

An assembler is a direct and non-tricky
translator, intended mainly to handle the details
of exact positi i ion code-
words and the exactly corresponding machine-
language program that you intend.

IT WORKS LIKE THIS: The assembler
scans through the program,
testing the p
After finding the key punctuation marks or
delimiters (shown as comma and slash for the
FIDO assembler), it scans for the alphabetical
instruction mnemonics, and translates them by
a table in core memory into the corresponding
binary codes. (It ignores everything on a line
after a slash , which is lucky, since in the
comments you may use words which are the same
as instruction mnemonics.)

The assembler also counts the instructions,
and (starting wherever you say) figures where
in core memory the instructions (and any data
or spaces you put in) go. Then it makes a list
of these addresses, called a symbol table (also
called a name list at less elegant places).

An assembler is the simplest form of
compiler (see p.J30). Basically it translates an
1 prog: which cannot be run
directly, into a binary program which can.

Then from this symbol table it fills the
resulting binary addresses into the binary com-
mands of the program.

Aren't you glad you don't have to?

Generally the assembler then sends out
the binary program to some external device,
such as a disk memory or paper tape punch.
Then it can be put into core memory when you
want to run it.

(You can put a program into core memory
one bit at a time through the front-panel switches;
but nobody likes doing this except for teeny pro-
grams.)

(Néte: an ler for one (say
the PDP-8) that runs on a different computer
(say, the 360) is called a cross assembler.)

OW ‘Yo see
WHy We USE
HIGHE | CONPUTER LARGUAGRS.

Mt paople Aot Dike fhos .

ing is good for the soul.”
Folk saying

nA biv 1,

Minicomputers are now being found
in highschools; active marketing to
highschools is now'being done by both
DEC and Hewlett-Packard.

Children's museums in Brooklyn
and Boston have recently obtained PDP-
1ls for the kids to interact with., In
the Brooklyn case, the computer will
even demonstrate the exhibit and help
the child discover things about it, in
ways worked out by Gordon Pask (see p.

LK

In the future, networks of minis
may be the systems to offer low-cost
information services to the home (for
speculations, see p. DM 57).

But minis will alsg start to make big-
ger and bigger incursions on the terri-
tory of the big machines. For instance,
one group proposes a time-sharing sys-
tem which will simply consist of Novas
interconnected in a ring, the so-called
STAR-RING, which will supposedly com-
pete with big time-sharing.

suotjonpoxg Xeusta ITeM

This ie a PDP-11, one of the world's best-designed minicomputers (see p. “4Li).
The PDP-11 i8 a 16-bit machine. Shown is Model 45, the fastest PDP-11, which
has various special features. Stripped, with 4K of core memory (that's 4096
locations), it costs about $13 grand. A smaller PDP-11 goes for some $5000.

Here's that selfsame PDP-11

A minicomputer simply means a
small computer, no different in
principle from the big ones (see
next spread), and it can do all the
same things except as limited by
speed and memory capacity.

(Mind, we are taiking about
real computers, not the little cal-
culators you hold in your hand that
just do arithmetic. A real compu-
ter is one which works on stored
programs and all kinds of data,
working not merely on numbers but
on such other things as text, mu-
sic and pictures if supplied with
appropriate programs; see flip side.)

There is some argument over
what constitutes a minicomputer;
basically we will say it's any com-
puter with a word length of.18 bits
or less (see "Binary Patterns," p.
27). (Some companies, like Data-
craft and Interdata, are trying to
peddle their worthy computers as
"minicomputers" even though they're
24 and 32 bits, respectively, but
that's very odd. Interdata says
any computer under ten thousand is
a mini-- which means all computers
will be minis by and by; a vexing
thing to do to the term.)

Traditionally minicomputers
come with much less. In the old
days pretty much all the programs
you got with it were an assembler
(see p. 35) and a debugger (see p.
J0) and a Fortran compiler (see p.
31) if you were lucky. Today,
though, with minis having highly
built-up software like (see pp.Yo-42
for descriptions) the PDP-8, the
PDP-11 and the Nova, you can get a
lot of different assemblers, to-
gether with Fortran, BASIC, and a
little disk or cassette operating
system (see p. 45) to make your
life a little easier.

The idea of owning a computer
may" seem strange to some people,
but with prices falling as they are
it makes perfect sense. Numerous
individuals own minis, and as the
price continues to drop the number
will shoot up. For several families
with children to pool together and
buy one for the kids makes a lot of
sense. One friend of mine has an 8,
another is contemplating an 11.
(I've been trying to get my own for
years; perhaps this book...) Any-
how, the general price range is now
$3000 to $6000 plus accessories,
and that's dropping fast., Rental
is usually a great mistake: prices
are very high and after six months
or so you'll have paid for it with-
out owning it. (But names of rental
places will be found in this book,
and some of them may offer good ar-
rangements.) Minis may now be had
in quantity for $1000 each-- price
of the PDP-8A in May 1974-- and soon
that will be the consumer price.

Unfortunately, the price of the
computer itself is dropping faster
than that of the accessories, such
as the basic terminal you'll need,
which still weighs in at $1000-5000.
Moreover, as soon as you want to do
anything serious you'll need a disk
(starting around $4500) or at least
a cassette memory (starting around
$1500). But these prices too will
come way down as the consumer market
opens.

Some of us minicomputer freaks

see little real need for big computers.

Minicomputers are splendid for inter-
active and ''good-guy" systems (see
p. 13); as personal machines,.to han-
dle typing and bookkeeping; even for
business systems, if you recognize
the value of working out your own in
BASIC or, say, TRAC Language.

Minicomputers are being put in-
side all manner of other equipment
to handle complex control., (However,
for repetitive simple tasks, the lat-
est thing is microprocessors (see p.
‘t4), which cost less but are harder
to program,)

in its overall setting. With
peripherals shown, plus the
magni ficent Vector General
display (shown later on in
book, p2"31 & elsewhere),
thie setup cost well over a
hundred grand. (Thie is the
Circle Graphics Habitat, oth-
erwise known as the Chemistry
Department Computer, U. Illi-
nots at Chicago Circle. Why
do chemists need such things?
See p. Im31.)

The good ol' PDP-8, perhaps
the most popular minicomputer
(12 bits). Full PDP-8s now
cost about $3000, "kits" less.
Shown here with a Sykes cas-
sette tape deck-- a nice,
rather reliable unit-- and a
sereen display (see pp222-3).
Courtesy Princeton University
& R.E.S.I.5.T.0.R.5. (see p.‘/z

Kids love computers.
They belong together.
Thie lad flips panel
switches on a Nova,
perhaps the third most
popular mini after the
8 and 11 (16 bits; see

p- Y4)).

DINK‘€5= 3n overview"

There is great confusion as between
various types of small computer, with the
latest stupid term, "microcomputer," add-
ing to the confusion. We have:

minicomputer or mini
Traditionally, any computer hav-

ing an architecture (memory and
main registers) of 18 bits or
less. Lately, unfortunately,
some people have been adver-
tising their 24-bit and even R
32-bit computers as minis. This
is just confusing.

(They base this on the fact
that "minicomputer" has also re-
ferred to a machine sold without
a lot of programs. But that's
really a separate issue.)

microprocessor
Two-level computer (see p. 44).

microcomputer
Crummy term apparently being used
to mean any tiny computer, regard-
less of its structure. Thus all
computers will be "microcomputers"
in a few years. This clarifies
nothing as to their structure or
use.

midi computer
Remember midi skirts? Well, this
term has been used for computers
larger than 16 bits or faster than
usual, by people seeking to give
the impression that their machines

are bigger than minis and less than

MEIN REGISTERS o GENERAL REGITERS of £ 37
"ACLUMU LA TORS " You're usually Svek
- %1:‘{ M(:lll SM{‘(
Adecessories which mferscl wil users are We i fl(m 1'&,').
- — » P
‘ ¢ [] LW on 3)
- 1
e LINEDRAWING COMPVTER DISPAY 2
\JP $ (see ¢y DM 20)

fewe:

,“\to'lﬁ
AVA\VAY :
77y &
& last resovf
when re's L.
hothim Ut(,nl’ . ..
- mewmory,: PROGRAN

—]
———
§‘J\

:‘ bavy

BASIC DESIGN oF SIMPLE comPurer

MINICoMPURER.

(’,U;" cohywﬁm' are

e Sme b/ more so,

A product called Cling Free

-~ comes scented in a spray can,
for preventing static in your
laundry-- is said to eliminate
static electricity in carpeted
computer rooms. Spray it all
over the rug, especially near
the computer, and you won't
zapp the computer with sparks
from your fingers.

NHERE Yo GET 'EM

A long but incomplete list of minicompu

biggies. Even the PDP-10 (a genuwine
biggie) has sometimes been called
a midi.

¢
’Eo RE MEMORY, sl call] FAST MEMOBY or WA MEMoLY

ROSRAM of Iiitle wrom dondls, coljed “coves.!|
. PRoGRA M
=B

e |
allowmq fast den Ty
N .’olsda&ab’ ljihi%fw‘_ e HJ:vﬁ ,1

are wi

?Eﬁcﬂf -t{ﬁv ryE k ecess”)

dove e

Willoot terfdring il <
whaever rrv Vnis QrR @
ruu‘\‘t:) .,1 ‘J.veu lnihhT.

HEY, SOME MINI RENTALS MAY BE REASONABLE
Nova minicomputers are leasable from:
Rental Electronics, Inc.
(a subsidiary of Pepsico)
99 Hartwell Ave.
Lexington, MA 02173

for as little as $250/mo., long-term.

ter manufacturers is at the bottom of p. 453,

THE FUN OF DERUGEING- ON A M) Wil l'-’JT 4o osva| —‘_?«\d‘\]p(2 Py Tap(veadovr acA \wkc‘_. Aﬂ'&v i bowbs:

“%k o Tla

Loo‘\'itn' loaday

&
‘A

how S T‘W. Lw'hT')
(o242
T gy

_—

how use

mJJar loader rmj;\

Aevr mox‘h‘»’ Wh 1w
{oada o2 load .
— 4& rrajrh

v 31’0\ on

papev

tope P

esdor 2\
TJIM ebugay) 4
dd‘“<. chotae choage

The mini man is like a rock climber,
chimneying and twisting to squeeze through
to his goal-- not his body, of course, but
his program.

\?; L‘Y" YO¥Preye caw

W T aere :f:;‘?“m 'T“l 3 QD
m Df:\w,n"" U

debus ¢ wvoavrv\ . -—
. 7 gt
5T°q- Pt
'ﬂmDL .
}M rna'\/ o o'o

one. (hilu e 5,°

or section 2,

at » 1‘,..“, $e 50

1"]'~ “ e fqwre .o:.e
u\;f U\S'fvvc_fu\@) .
15 @re) = evroy!

38

Operator's console of
P this particular setup.
The operator may use the
keyboard or lightepen
(see p. B(M23) to select
among waiting programs,
submitted by various

programmers and depart-
ments.

T by .

The parts of a computer are set
up to be gotten at, to be refilled and
repaired. eir innards swing open
like refrigerators. Similarly, the
wiring of computers is in separate sec-
tions or modules ('"module" merely be-
ing today's stylish term for "unit"),
having very orderly connections among
them. Individual circuits are on cir-
cuit sheets or"cards" which plug in
sideways and may be replaced easily.
There's nothing really computerish
about this, it's merely sensible con-
struction; but it is traditional in
other fields to build something as a
tangle of wires. (When TV makers fol-
low these rational practices, they
call it "space age construction.')

The operator muses at the console of the main computer at the University

of Illinois at Chicago Circle. It is‘an IBM 370 model 158, which rents for Why are the different parts so
about $50,000 a month, including all accessories and a dozen or so terminals far apart? So there's room to swing
-= in the parlance of big-computer people, a "medium-sized installation." them open, refill or change them, sit

down and repair them. Refrigerators
could, and perhaps should, also be
built in separate sections, but it's
not traditional. Automobiles can't
be spread out because they have to en-
dure the jostles of the road. But
computers like this baby aren't going
anywhere.

This is a big computer. Also intimidating is the fact

In principle it's no different from a small one; but it has that you have to ste up ;5 you enter
bigger memories, more registers, more program followers. There a computer room. hat ; ecause gom'
are more specialized parts.and more things happening at once. puter rooms 9rd;nar11{1 ave rglse
(Thus the term ''digital computer complex" is sometimes used for floors, perm1t;1ng'ca esfto e runt
a big computer.) It comes supplied with a monitor program or around among the pieces of equipmen
operating system (see p. 45) and a variety of other utility pro- without your tripping.
grams and language processors. 3

Computer rooms are gengriély 1it
iggi i i i i by millions of fluorescent bulbs,
thingg1§g1gza¥gv:hzagzy;2;?ous and seemingly incomprehensible making them_ggrishly bright. This is
simply tradition,

For one thing, where is the computer? All you see is a lot
of roaring cabinets.” Which is 1t? Big computers can have millions
of words of core memory. Moreover,

Answer: all of them. "The computer" is divided among the there are usually several disk drives
different cabinets (note diagram and cluster of pictures locating and -tape drives, as seen in the pic-
the operator among them, below). The external devices or peri- tures, used to hold data and programs.
pherals (see p.-§7) are usually in separate housings. Usually (Some of the programs are the system
there is one single box or "mainframe" containing core memory, programs, especially the language pro-
main registers, program-following circuitry, etc., as in the ma- cessors and the operating system--
chine illustrated, but these things don't have to be in one box, see p. 45-- but other programs and
and sometimes aren't, — most of the data belong to the users.)

M3y C""f"‘}",

ore . memo v7

AN OPERATOR IS NOT A PROGRAMMER

Cindy Woelfer is the day-shift operator of Circle's big computer.
The job mainly consists of changing disks and tapes,. starting and stop-
ping different jobs listed on the scope, and restarting the computer
vwhen the system crashes (gratuitously ceases operation) .

Ms. Woelfer, a thoughtful person, says she does not find her job
very stimulating. She can program, but the job doesn't involve pro-
gramming. - It's also a lonely job. Non-systems people, except Mayor
Daley, aren't ordinarily allowed around. About the only people to talk
to are the systems programmers who stop through to look at the scope
and see whether their programs are up next.

REGIS\E! ¢t 56 t\e\m«in o Machue
M“L"‘“*;‘ for (SF" fregra~ F- ower, ")

“"Et!f’é;‘f 7 wan e ’1.,51..\ Fhows.

==
I |

ANOTHER CoRE MEMORY

‘suw mw oo sTeRy
" . FotLo Wers.

CORE MEMORY

whose o
= Tory Der
TROGRAM, RONNING- b [i T
AT THIS INSTANT PROGEAN WHOSE Lu‘
TURN 1T 1s8'F — so0n
wil

be .
A machee havm -
o prosre M\ouer> -
woltgrodessor. mi!v-N u aoreeyT
PROGRAW

INCOWN G-
(ev OV GOING)
SATA

BAIA Chavug,
€S0 oy

—_—

2§ e dpv, ov Codu| Procsg W,
Cousdly .(L m'u follower-
el fle st &Y wam vr‘bu
L3 cany e 'yoym wf 'Y

VTGO ING
o mu-m.)
-

n & ot of tore

wflnd sefermphing

e b progin?

o ;_Kgﬁurl\le or

|
0
W DFERATING SYSTEM |
or SUPERVISOR:
’A 101“4' Spa@ 1w cort \
= LI B
s

PATA lamnes
Lo\l

N1TOR
progrons (se ¢-

aiemable Jevices whese wan foncton
of dove we . (Dn oML (O

e bts chowel s 2 - P‘“\Jd
rmeple of lms 2 ok were X

’ ‘ DATA CHANNELS wve pro
s o bn Ph moam)
sucbh as Guivel Data 6600
h»«ctwrl\w fielf, eapable w
aollaberaTion wilh the wan slachue .
P> ehannels Ao wolhave o 3wt cawm»\ |"\5“y ac T matn cauvv'lw.
Swe \"3 compeRys, e [T TOP-10, don't even have dah ehannelr,

"'“\ b«ﬂ(
Trae chonsl

J/ -Nf@mr omes

= (=[F
b [Ene ¢
5:7? ;i-i"" 11N
'M"» wore diske Anves ‘“Kﬁ-:m‘)ﬂ- CoMMUNCAT1ON w--rgj '.“L, .’5

(.) DATA CONTKN‘LGK - '"“7'

4
tond Toed
T & Hens
(g Sy ety

OUTSIDE

WORL)
”::':..W M

= own howa.

\ 56\ e
\<§_/‘_‘1 commvuicafTom It save
on yhowe Lills betwess cities,

T
Coctorer Swrv"‘u -
} s:Eg) by Bakit
@ l{ Q
Nuw.qu

Foma - :l\mh
vty

&l

4' rlve.lr
1‘\rw)L ;wrh'
yes) your seeret

Hyoun
ovdes aqu -&r frae,
chenge ks jvu‘u.“

fn L Qivey
foeald ’ul\ as:

To B More speciFie,

descriptions of some prominent big computers
will be found on the next four pages.

=2
2

norE P roGRAMS

39

It used to be traditional for
machines like this to have many many
rows of blinking lights, showing what
was in all the main registers at any
fraction of a second. But there's
really no point in seeing all that,
since about all you can tell from it
is whether the computer is going or
not (if it's not, the lights are stop-
ped) and other high-level impressions.
For that reason some big computers,
beginning with the CDC 6600, started
doing away with the fancy lights and
bringing written messages to the op-
erator on a CRT scope instead (for
lots more on the glories of CRTs,
see the flip side, pp. DM 277,

Big computers can have multiple
program followers and sets of regis-
ters (a program follower and its
main registers are together called a
CPU, Central Processing Unit). A
computer with two CPUs, ie., two
sets of program followers and regis-
ters to carry the programsbut, is
called a dual processor; “a computer
with more than two CPUs is called a
multi-processor.

Separate independent sections of
core memory may be put in one computer,
allowing separate program followers
and data channels to work at the same
time., (Note: a "bank" of core memory
is an independent section. Except in
this sense of ''core memory bank" or
"core bank," there is no other correct
usage of the layman's vague term
""memory bank." Computer people only
say '"memories,'" and distinguish fur-
ther among core, disk, tape, etc.

Note that 'data banks' are a separate
issue-- see "Issues," p.§5g .

DINOSAURS?

Many computer people, the author
included, entertain certain doubts a-
bout the long-term usefulness of big
computers, since minicomputers are
cheaper, especially in the long run,
and can actually be in the offices and
homes where people create and use the
information. Big computers are neces-
sary for time-sharing (see p.Y4YS) and
huge '"number-crunching' jobs (see
"Grosch's Law,'" nearby). However, it
will soon be cheaper to put standard-
ized number-crunching jobs in stand-
alone or accessory hardware; see "Mi-
croprocessors,' p. YY.

Fans of big computers also argue
that they are necessary for business
programming, but that only means tra-
ditional business programming-- non-
interactive and batch-oriented. For
tomorrow's friendly and clear business
systems, networks of minis may be pref-
erable. But makers of big computers
may be unwilling to admit this possi-
bility.

SYSTEM

Tends to Happen several times a day.

GROSCH'S LAW

Minicomputers are so nifty that we may ask
why have big computers at all. The answer is
that there are considerable economies, especially
in applications that require many repetitive oper-
ations and don't need interaction with users.

A hypothesis about the economy of big
s was fc lated a long time ago by

Herbert J.R. Grosch, onetime director of IBM's
Watson Lab and now a heavy detractor of IBM.
Thus it is called Grosch's Law. The idea is
basically that there is a square-law relationship
between a machine's size and its power (narrowly
defined in terms of the cost of millions of operations,
and without idering the adv of interactive
systems or other features which may be of more
ultimate value). Anyway, when I asked him recently
for his formulation of Grosch's Law, I got the fol-
lowing:

"Grosch's Law. (formal): Economy in computing is as the
square root of the speed.
(informal): If you want to do it ten times
as cheap, you have to do it a hundred times
as fast.
(interpretive): No matter how clever the
hardware boys are, the software boys piss it away!"

40

JOoME
GREAT @APUTERS w ey if

computer that the IBM 7094 was in the sixties.
The PDP-10 is excellent for making highly interactive

Here, then, are some thumbnail descrip- systems, since it can respond to every input character

tions of sonedire:t, classic or popular com- typed by the user.

% 3 P . : . :

puters, expanding our basic diagrams as needed “Q It is a favorite big computer among research people
Individual computers represent variations and the well-informed. The ARPANET, which connects big

of the patterns shown so far. computers at some of the hottest research establishments,

is largely built with PDP-10s. There are PDP-10s at MIT,

The particular structure of registers U. of Utah, Stanford, Yale, Princeton and Engelbart's shop

memories and pathways among them is called the 1 (see p. Yo). The Watkins Box (see p.)M33) hooks to a 10.

hi £
rehte oty o aacomputer (seep 52’) The (5‘ "'19 Digital Equipment Corporation, aware that its computer

binary instructions available to the program-

mer are called the instruction-set of th trademark "PDP" connotes minicomputers to the uninformed
particular co-putermge—(ghe w:rd now wants the 10 to be called DECsystem-10 .rather than Pl’)P.
"architecture" is often.used to cover both, The IBM 7090 was the classic computer. We'll see if that catches on.
including the instruction-set as well.) Introduced about 1960 and mostly gome by '66,
it was simple and powerful, with clean and Who designed it is not entirely clear. I've heard
The principal variations among computers decent instructions. With its daughter the people attribute it variously to the Model Railroading Club
are the word length (in bits-- see "binary 7094, it became virtually standard at uni- at MIT, to Gordon Bell, and one Alan Kotok.
patterns," p. 3%3) and the number and arrange- versities, research institutions and scien- L. . . R
ment of main registers. Then come the details tific establishments. At many installations Originally it was the PDP-6, which appeared about 1964,
of the instruction-set, especially the ways that went on to 360s they long for those and was the first computer to be supplied with a time-sharing
in which items are selected from core memory clearminded days. . system, which worked from the beginning, if rockily. Now
i- the addressing structure. Then the instruc- it s.good and solid. DEC's operating system for it (see p.
tion-set, whose complications and subtleties The 90 had three index registers and :5) is called TOPS, but BBN sells one called TENEX, also
can be considerable indeed. fifteen bits to specify core addresses. ighly regarded. The 10 does time-sharing, real-time pro-
(This meant, of course, that core memory gramming and batch processing simultaneously, swapping to
The individual computer is the complex could ordinarily be no longer than 32,768 changeable areas of core memory. (This fﬁature"should soon
result of all of these. If they fit together words ("32K"-- see "Binary patterns," p. J3.) be available, at last, on IBM computers ("VS52-2").)
well, it is a good design. If they fit to A later model, the 94, went up to 7 index
gether poorly, it is a bad design. A bad de- registers, since there were three bits to . PDP-10 time-sharing works even if you don't have a disk,
sign is usually not so much a matter of overt select them with. u§1ng.DECtape (DEC's cute little Fapes). .Of course, without
stinky features as of ramifications which fit disk it's really hobbling, but this capacity is nevertheless
together disappointingly. (Glitch is a term Acound|ater noteworthy.
often used for such stinky features or rela- Tude Ry AC (A : : ; :
tionships.) oy _The PDP-10 has debugging commands which work under time-
X1 sharing and with all languages, and hugely simplify program-
The possible ways of organizing computing e e o ming.
hardware are vast, and only partly explored. 2 (M LEkteny . . .
(An aside to conp\’xter guys):' gn thz Inlt’el chip B2K core mewor i Unlike the IBM 360, whose hardware protection comes in
debugging consoles they have an address trap (32,768 words -»2) options, the 10 has seven levels of protection: the user can
(trapping on a presettable effective address) 4 specify who may read his files, run them, change them, and do
and a pass counter (trapping after n passes). four other things. The PDP-10 does have job control commands,
How come we haven't seen these sooner?) but they are not even comparable in cumberosity to IBM's JCL
: Language (see p. 31), and they are the same for all three
The machines mentioned here are an arbi- modes of operation: time-sharing, real-time and batch.
trary selection. Some of them are the Great
Numbers, computers so important that folks use 16 Gewers| Reguters ('runtk a Tndex g.y;.u)
their numbers as proper nouns, with no brand Sets
name: A &r
————1 "m.“.\
"Do you have a 360 up there?" —— — _'r"_r'_
1 . ki h,
"No, but there's a 6600, a 10 and a E T "“"j [see—— %W?S‘
bunch of '8s." ’ a el St N [5
B [Chyannd 1T uses tocATIOws " !
. I \
"Personally, I'd rather work on a 5500." PR msréap. N *‘j ")‘f*'
SBrow \ e
Here is what they are talking about. Ve (\5 jz,*
g | \ prter
D) | \
L kﬂv)) \
‘ i Staeks IT ~

Though these were million-dollar ma-
chines ten years ago, you now hear of them

L1

being offered free to anyone who'!ll cart

them away; partly because they needed a lot - Dh cienyeLs
of power, airconditioning and oso on. But haskie, o Po 63
% A Ext. pevees they were great number crunchers. (If you Pt sk users
& violator oy AC / [es) want a 90, I believe that 90 lookalikes are Ojfons aifvs (WYer Lue ﬁ)..«. Optend
"EDIIIIDED £ still available from Standard Machines in S A])
(l‘l- bils) P I California.) frocassors
g1
("65‘ Fiew) o %016 works W (4K)
=3 52 ~
1’ N c; "Aau"of ‘ &’\443
K 128 words el DUA—;
1 e, & _®
oy ok Topes
Six' 11
—— Ofler E ..(.‘“\66 Cg,{;\;) ° The PDP-10 has 36 bits but has instructions to operate
Af? 0 on chunks, or bytes, of any length. It has sixteen main reg-
: Univac's 1106 and 1108 are fast, highly isters, as does the 360, but uses them more efficiently.
regarded machi . In designi . L. .
—\ \ Un%vac did a ;r;:‘s,er t:in;flggz;gb:l{itcg:p\:gfr The PDP-10 also has unlimited indirect addressing: an
graded 7094. This meant (as I understand it) instruction can take its effective address from another lo-
that all the programs from the old 7094 will cation, which can in turn say to take its effective address
run on it, But instead of two main registers elsewhere, ad infinitum. For your heavy tight elegant stuff.
\ they have z8. Perhaps most important, the 10 has a full set of stac.:k .
0 Where th found t i i i - instructions (see "The Magic of the Stack," p. 42), allowing
‘M‘T‘ nge *5 tion v(lord to s:{ectugmongeag1‘:},;2;2:3;;%?;“ programmers to use multiple stacks for purposes of their own.
4036 o (%) I can't tell you.) (The operating system's own stacks are protected.) Program-

mers do not have to save each other's registers, as on the 360.

The 1108 is a larger version, with twice Programmers are relatively safe from each other.

The PDP-8 was designed by Gordon Bell as many main registers.
(in its original version, the PDP-5) about

1960. Originally it cost about $25,000; as Zgnam r;;., vig:

itk e
of May 1974 that price is down to about $3000, o - 1 Menory Address

e
or less than a thousand dollars if you want 6 | S— w_ —
to buy the circuits and wire it all up your- Tndex Ll (% .J,',:..'X,,. W\Tfl q s
self. Yup, here comes that Heathkit. &D.,M has A o afyress
| ———— reclly radkes 260k
The PDP-8 has been DEC's hottest seller; Owr. | C————— 3"*%»— whrect ! > o)
you'll find them in industrial plants and l;r e ——— gé& &
museums, or even hidden in the weirdest equip- —— 1
ment, from typesetting devices to big disk e —— veadters X s s R
e Some think of the PDP-6 and 10 as a glorified 7094 (with
::z‘:.‘” :: “1;0'..1‘1;:..11;"" there are . ACs :60«. 18 addressing bits, instead of 15). In this case we might
ow them ins out. : These consider the 360 a stripped-down version of the 6, since IBM
Today the PDP-8 s archaic, with its | S —— o« threw out the stack and in most models the memory mapping.
ooms ’
one accumulator and awk d addressing sch ¢ PDP-10s are ordinaril 3 i 3
- y sold where the views of scientists
you can only get to 256 d'“f?’°:: .ddron-e; :: $ and engineers are considered important, and comptrollers do
core memory g"“"tl" “di’lt g °ml';" tn - not have first choice. Nevertheless, some say that its busi-
pages. But for its time it was a : an ness-programming facilities (i.e., COBOL, duh) are just as good
design, packed like a parachute, an °z°" to- as those of companies who claim to have designed computers "for
day there are ?°°l.’1° who ;"“; by :G.Pnrgl) all purposes." First National City Bank of New York has found
look at what Bell's done lately: the =il that the PDP-10 makes a splendid banking computer for internal
use, profitagle at an internal charge of $3.75 an hour plus
many he PDP-8 processing charges. Prices for a PDP-10 system with disk start
eh“‘:‘: and ‘g"-‘l:;" oxist 50: g o ,’tlut start about $500,000, or $15 grand a month, and go up into the
it will be with us for the foreseeable future. A millions.
w, ' " oxample (seepp. i
g"‘.ﬁ)t:: n:n:c::e:l\;;i:::::gl;u” we -:,(.“‘ﬁ. D"‘Dﬂ}[[%1}—' However, DEC salesmen are not like IBM's, who can reputed-

: . But let' on salary. That fits DEC's demure, aw-shucks image, but it
::::"::y"::’t:.’::'f::.: away . doesn't exactly sell big computers. !

(For you Firesign Theater fans, the mutterings of the
ahy dying computer on the "Bozos" album are various PDP-10 system

that a PDP=-8 on one or two wristwatch-sized E ly sell Eskimos to iceboxes. For one thing, DEC salesmen are
thingies, artistically juxtaposed.)

= (Lookalikes available from Digital Computer
Controls and Pabri-Tek.) 16 b ch

%w) a3%0 (L34, 165, 8L, 4)

"No corporation ezcept IBN could sell a computer like this.” -- A friend.

The IBM 360 (now called 370 because we're in the 70s8) is
the commonest and most ful line of p in the world.
This does not necessarily mean it is the best. There are those
who appreciate IBM typewriters but not their computers,

360s are bought because the repair service is great; be-
cause IBM has very tough salesmen; and possibly for other rea-
sons (see pp. 52-§). '

A strange unseen curse seems to haunt the 360 series; in-
deed, some cynics even think it results from deliberate poli-
cieg of IBM! Yet the 360 (and its software) seem somehow or-
ganized to make proirus inefficient and slow; to make programs
big, needing lots of core memory (with numerous enticements for
the programmer to take up more); to prevent the compatibilities
that are so widely advertised, except through expensive options;
to make things excessively complicated, thus loc| ing in both its
customers and the employees of its customers to practices and
intri:.acies that are somehow unnecessary on other brands of
computer. -

| s |
—0
—— 16 man reaiers
r\ : G Ly
——
fm———— ——]

—F 3 9 9_4,,) s s
———————y 0‘1-7\4)

day

W Jara CHine Fast
RS ey
- 3
o, '-Mﬂu wwzv) (o nawet')
St denay ot ona hedie seg
acceswes fot dera
E Y f_A)

The design of the 360, which was basically decent, is gen-
erally attributed to Amdahl, Blaauw and Brooks. Those who hate
it, and there are many, base their complaints largely on the
restrictions and complications associated with its operating
system 0S, which is notoriously inefficient (see p. 45)

The architecture of the 360 was quite similar to the PDP-6
(now the PDP-10), designed about the same time: sixteen main
general-purpose registers of over thirty bits, and using the
16 main registers as either accumulators or index registers.

A curious form of addressing was adopted, called "base-
register addressing." This had certain advantages for the oper-
ating system that was planned, and was thought to be sufficient-
ly powerful that you wouldn't need Indirect Addressing. Two
main registers were required, one holding a "base" more or less
equal to the program's starting address, and an "index register,"
whose contents are added to the base to specify an address.
Often a third number, or "offset," is added as well.

resisters

The idea of this technique is that programs can be "relo-
catable," operating anywhere in core memory. A few instructions
at the beginning of each program can ascertain where it is run-
ning from, and establish the Base accordingly.

T’ile basic idea of the. 360 seems to have been doped out for
multiprogramming, or the simultaneous running of several pro-
grams in core, a feature IBM has pushed heavily with this com-
puter.

WHAT'S WRONG WITH THE 360°?

The main differences between the 360 and the PDP-6 and 10
represent conscious and legitimate and arguable design decisions.
To fans of the PDP-6 and 10, here are the 360's main drawbacks:

NO INDIRECT ADDRESSING. This was because, within the ad-
dressing scheme adopted, indirect addresses could not be adjusted
automatically. (But it also makes programs more inefficient,
thus more profitable to IBM.)

NO STACK. Why? Too expensive, said Amdahl, Blaauw and
Brooks in the IBM Systems Journal. Funny, they have stacks on
$5000 PDP-11s-= and it would have saved everybody a lot of
money on programming. e

NO MEMORY MAPPING (except on certain models). Where the
PDP-6's successor, the PDP-10, automatically takes care of re-
distributing addresses in core to service every program as if
it were operating from location zero on up, the 360 left this
general problem to local programmers and (on certain levels) to
operating systems.

Handling this automatically in the PDP-10's hardware ob-
viates the complications of base-index addressing and makes pos-
sible the efficiencies of indirect addressing.

LOOKALIKES

360 lookalikes were sold by RCA and Univac. Now that RCA
nodlonger makes computers, Univac is servicing the ones they
made.

And Amdahl, no longer with IBM and now head of the Amdahl
Corp., is coming down tge pike with a super-360 of his own, in
art backed by Japanese money. It will be bigger than IBM's
A:gge:t-- and cheaper. (See Hesh Wiener, "Outdoing IBM: the
ahl Challenge," Computer Decisions, March 73, 18-20.)

"Sl f -su
(holived)
(0 v%)
FIRST OF
:»ilmu’éf:‘m. Klso €400, 6800,

Control Data's 6600 computer was the
first really big computer. The first one was
delivered around 1965. The machine and its
operating system, CHIPPEWA, were created by
Seymour Cray and his team in hinterland Min-
nesota.

Extreme speed was designed into the com-
puter in a number of ways. The main computer
has no input or output at all; this is hand-
led by data channels which have been built up
into full-scale minicomputers or "peripheral
processors" of 18 bits.

TRy
_
=,

".! }SM"%{T—D—F

for L-\w) &3t

: T ¥ /
i

(3 RO . A 16 =

RO, Tt (4 1ol
N R LT ey
W RS

[IR NN

Instructions can be executed at light-
ning speed, much faster than the usual micro-
second or so. However, since core memory is
much slower than the main registers, a trick
is used: program instructions are drawn from
core into a superfast instruction list (often
called a cache), and any jumps or loops with-
in this seven-word cache can be executed at
unthinkable speeds-- perhaps tens of millions
of times per second.

The machine is especially geared for
floating-point numbers (see p. 89)‘ Because
of the intense speed of the fast instruction
cache, many instructions (such as multiplica-
tion and division of integers) can be accom-
plished faster by a short program than if
they had actually been wired into the computer,

They 6600 became the start of a whole
line, including the 6400, 6800 and otherss
The 6400 is used by PLATO (see p.)Witr).

% NoyA
(16 \%)
o Ac A .
u-'{; E@ } ;}5)

]

Ky

Dk
Ue ks
St
Chand
The Nova came out in the late sixties.
Basically the story was this: some of the
higher people at DEC, perhaps dissatisfied
with DEC's soft sell, perhaps out for their
own personal share of things, broke out and
started their own corporation. They had in
hand the design for a hot, solid minicomputer
-~ some say it was the rejected design forthe
as-yet-nonexistent PDP-1l-~ and since then
they have built it reliable and sold it hard.

The basic design of the Nova is sleek
and simple: four main registers, no stack,
well-designed instructions. Moreover, it
was (I think) the first computer to be built
around a Grand Bus (..o"'§65‘,‘ a design which
has caught on rather widely.

Data General (the company mentioned)
has used a very interesting marketing strat-
egy. Ins d of bringing out a variety of
new computers as time goes on, they concen-
trate on making the Nova faster and smaller.
They began by competing against DEC--
pecially in "the OEM market," purchasers who
are burying minicomputers in larger equipment
they in turn make-- but more recently they
have actually started to market against IBM

with business systems. In recent months,
Teneral ads have ridiculed the complex-

rightly that minicomputers programmed in
BASIC are a reasonable alternative for a wide
variety of business applicatons.

The Nova's instruction-set is clean
and straightf . y 1 (first
bits only):

00000 Jump (thus an all-zero in-
struction jumps to loc §)

0000X Subroutine jump

000X0 Increment, skip if zero

000XX Decrement, skip if zero

00X Load AC

0xo Store AC

X Instructions among registers.

One competitor, Digital Computer Con-
trols, sells a Nova lookalike. Whether Data
General will sell you its programs to run on
it is another question.

\/a

4l

) T, the Classic 1_4 INC— (ese)

e
Gore memery Anided uke 10 04-werd secTions

ey et
trgrem R 170 g il

[TXLY (“L-"—q"b\“ v Bonk)

A An e ek el dir Pogla, Bl
ln‘
UMB Memor: J»k;)
Wt

/X

o semsovs,
';au:\fﬂ;, eta., i aed of

A computer named the LINC, now usually
referred to as "the classic Linc," was perhaps
the first minicomputer. It was an important
forerunner of our highly interactive systems of
today, notably including today's graphic dis-
plays with double program followers (see p.
»ML3), which offer the highest interactive
capabilities.

Perhaps most importantly, it was designed
with none of the biases that creep in from the
traditions of business computing.

It was called the Linc because it was
designed at Lincoln Laboratories (about 1960),
for "biomedical research'-- actually it was
the sort of computer you'd wani for hooking
up to all sorts of inputs and ortputs, to
make music, to run your darkroom, but only
medical scientists could afford it, so that's
what they said it was for.

The LINC had two interesting innovations.
It was probably the first computer to be des-
igned with a built-in CRT display (see flip
side). It also came with a funny little tape
drive, designed for reliability and high res-
ponse, that was supposed to perform almost as
conveniently as a disk and be reliable even
in dusty or messy environments, This was the
LINCtape, still offered as an accessory by one
company. DEC adapted it somewhat and made it
the DECtape, handy pocket tape unit of the PDP
computer line.

It was never sold commercially. A dozen
or so were made up specially out of DEC mod-
ules and dealt out to various scientists, and
the general hope was that DEC would take the
machine up as part of its product line, but
that's not what happened. DEC instead pushed
its PDP-8 and gave us instead, by and by,

Y INC-

(IZ Vb & warrage of
o PDP-g Wl T LNC)

A (o re)
g a
fméerz Al fage 0 o s by) '5]6 G M
fouow g T FoLLow

{I'ré‘ﬂq
A
{"my.’ 3".’!

LR TN

DEC was offered the option of building
Lincoln Laboratories' classic LINC, but deci-
ded instead to combine it, in the mid-sixties,
with the already-successful PDP-8, That way
all the PDP-8 programs and most of the LINC
programs would work on it. The result is kind
of strange, but very popular in biomedical re-
search: two computers in one, handing control
back and forth as needed. You can write pro-
grams on the Linc with sections for the 8, and
vice versa. Hmm. A more recent and slicker
version is called the PDP-12,

While you might half-think that both
sides of the computer could work simultaneously,
giving you double speed, it doesn't work that
way. There's only one core memory, and that
sets the basic speed; either a PDP-8 instruc-
tion or a Linc instruction can be underway at
once, but not both.

Nevertheless, we see here the double
structure that plays such an important part
in highly interactive computer displays (see
Ps OM2D). Indeed, Linc programmers often
use the machine just that way: the PDP-8 run-
ning an actual program, the Linc part running
the CRT display in conjunction with it.

A horrifying and weird picture of an experi-
mental monkey sitting on a PDP-12 and making
like the Creature from the Black Lagoon is
to be seen in Time, 14 Jan 74, p. 54. It
looks very scientific.

BIBLIOGRAPHY

The classic book: C. Gordon Bell and Allen
Newell, Computer Structures: Readings
and Ex;mp es. cCraw-Hill, 1 .
Note that Bell designed various

of the PDPs, and Newell pioneered in
list processing (see p. 26).

Computer Characteristics Review keeps you

_Lm_touc wi e traits of avl:ilible
computers and peripherals. §$25/year
(3 issues) GML Corp., 594 Marrett Rd.,
Lexington, MA 02173,

Other firms, such as Auerbach,
offer more expensive services of the
same nature.

B. Bei;er, The Architecture ylm_g Engineerin
of Digital Computer Complexes. Plenum

Tess, Z vols., .

Heavier than Bell and Newell. A
catalog of thousands of structures and
tricks, emphasizing the tradeoffs among
them.

e

2

Ner of

¢ 5500+
{M’ ""“3“\ olbseure)
e
N Eaa

=) =)

| e}

=)

e Ry

I have heard no computer more widely
praised among computer people than the Bur-
roughs 5000 (replaced by the 5500). The 5000
was designed about 1960 by Edward Glaser and
Bob Barton. It was designed to be used only
with higher languages, not allowing program-
mers access to the nary instructions them-
selves. Indeed, it was nrticularl{ designed
to be used with ALGOL, wgich would have been
the standard lansuage if IBM had allowed it
(see p. 1) and is still the "international"
language.

Because of this approach, its main regis-
ters were to be hidden from the programmer,
and attention centered instead upon the stack,
a high-level programming device (see box on
Stacks). However, index registers were added
to make it better for Fortran.

The 5000 was marketed as an "all-purpose'
computer with an operating system, anticipating
IBM's 360 of a few years later, Indeed, after
the 360 was announced, Burroughs sales picked
uﬁ, because IBM salesmen were at last-promoting
the concepts that customers hadn't understood
when they heard about them from Burroughs
salesmen years before.

Bigger machines in the line are now the
6500, 6700...

The Burroughs Corporation continues to
be an ackriowledged leader in computer design.
Apparently their sales force is something else,
unfortunately. I once spent some time with a
Burroughs salesman who not only knew nothing
about the magnificent structure of the machine
he represented, but would not get me further
information unless I demonstrated that the
company’' I represented (a large corporation)
was seriously interested. He wore very fancy
clothes.

FVERTHING-
N

DEEPLY
INTERTWING(ED:

e o
Stk ==

The Stack is a mechanism-- either built
into the computer ("hardware') or incorpora-
ted in a program ("software") which allows a
computer to keep track of a vast number of
different activities, interruptions and com-
plications at the same time.

Basically, it is a mechanism which allows
a program to throw something over its shoulder
in order to do something else, then reach back
over its shoulder to get back what it was
previously working on. But no matter how many
things it throws over its shoulder, everything
stays orderly and continues to work smoothly,
till it has resumed everything and finished
them all.

It goes like this: if the program has
to set aside one thing, it puts that one thing
in core memory at a place specified by a
number called a stack pointer. Then it adds
one to the stack pointer, to be ready in case
something else has to go on the stack. This
is called a PUSH.

urw“ll

When a program is ready to resume a prev-
ious activity, it subtracts one from the
stack pointer and fetches whatever that stack
pointer points to. This is called a POP.

Ean|

1?

v
Jorak

i

It may not be immediately obvious, but
this trick has immense power. For instance,
we may stack any number of things together--
the addresses of programs, data we are moving
between programs, intermediate results, and
codes that show what the computer was doing
previously.

Using stacks, programs may use each other
very freely. It is possible, for instance,
to jump among subroutines-- independent little
programs-- willy-nilly, using a stack to keep
track of where you've been.

RN
(e

In this case the stack holds the previous
locations and intermediate data, so that the
program follower can go back where it came
from at the end of each subroutine.

STACK
SUBROVT INING
B
: AT
P A

This even makes possible '"re-entrant" programs,
meaning subroutines that can be used simul-
taneously by different programs without mixup,
and "recursive" programs, meaning programs

that manage to call themselves when they
themselves are in progress.

/ N
.
ramn == R
b =
Rerory =
_,//4/

Stacks are also used for handling "interrupts"
-~ signals from outside that require the
computer to set aside one job for another.
Having a built-in hardware stack enables the
interrupts to pile up without confusion:

TP ks
e v e
Dty sel aol;
Serngt prop
BT dy ey

Finally, stack arithmetic, like that done on
the Burroughs 5 , enables arithmetic (and
other algebraic types of activity) to be han-
dled without setting aside registers or space
in core memory. As a simple-minded example
on a hypothetical machine, suppose we wanted
to handle

2+7x3

On this machine, let's say, this gets compiled
to a program and a stack:

MoGRAR STadK
f= g s . .
fustencr 7
1 3

Then the operations are carried out on the
stack itself:

o A
Y rop, i 'ew, : GEw
!me 5 1] ‘\‘vlL\"“‘”" ot ke
l 1 I
[.
ror, whtracl tem,
Ot RGN == &

_Stack programming tends to be efficient,
particularly in its use of core memory.

Some languages, such as Algol and TRAC
Language, require stacks.

Some computer companies, such as IBM, .
resolutely ignore stack architecture, though
hardware stacks have become widely adopted
in the field.

whe GRADEYS

In electronics, a "bus" is a common
connector that supplies power or signals to
and from several destinations. In computers,
a "bus" is a common connection among several
points, using carrying a complex parallel
signal.

The Grand Bus, a new idea among computers,
is catching on. (The term is used here be-
cause the colloquial term, "Unibus," is a DEC
trademark.)

Basically the Grand Bus is a connector

of multiple wires that goes among several

jeces of equipment. So far that's just a

us, But a Grand Bus is one that allows the
different pieces of equipment to be changed
and replaced easily, because signals to any
common piece of equipment just go out on the
bus.

This means that the interface problem
is deeply simplified, because any device with
a proper bus interface can simply be plugged
onto the bus.

It does mean a lot more complexity of
signals. The Unibus, for example, has about
fifty parallel strands. But that means var-
ious tricky electrical dialogues can rapidly
give instructions to devices and consider re-
plies about their status, in quick and stan-
dardized ways.

Prominent grand buses include:

The Nova bus (nameless; the first?)

The PDP-11 is not a beginner's computer.

But the power and elegance of its architecture
have established it, since its introduction in
1970, as perhaps the foremost small computer

in the world.

Actually, though, we can't be too sure
about the word "small." Because as successive
parts of the line are unveiled, it becomes in-

creasingly clear that this line of "small"
computers has been designed to include some

very powerful machines and coupling techniques
among them; and it would seem that we haven't
seen everything yet.

In other words, DEC's PDP-11,
which has already cut into sales
of their PDP-8 12-bit series and
PDP-15 18-bit series, may soon cut
into its PDP-10 36-bit series-- as
designer Bell unveils (perhaps)

monster PDP-11s in arrays or double o <
word-length or whatever. NI ,__/T
The PDP-11 was designed by C. Gordon Bell
and his associates at Carnegie-Mellon Univer-
sity. In designing the architecture, and es-
pecially the instruction-set, they simulated
a wide variety of possibilities before the
final design was decided., The resulting ar-

b dateal

Pl o vediiferg

LNLLIING
e

A -‘]«ﬂ-w

chitecture is extremely efficient and powerful
(see box, "The 11's Modes").

Basically it is a 16-bit machine, with
_most instructions operating on 8-bit data as
well.

There are eight main registers. Two,
though, function specially: the program coun-
ter (that part of the program follower that
holds the number of the next instruction), and
the hardware stack pointer, both follow the
same programming rules as the main registers--
an unusual technique. Thus a jump in the pro-
gram is simply a "“move" instruction, in which
the next program address is "moved" into main
register #7, the program counter.

In addition, all external devices seem to
the program to be stored in core memory. That
is, the interface registers of accessories
have "addresses'" numerically similar to core
locations-- so the program just "moves' data,
with MOVE instructions, to doorways in core.
(This is facilitated by the automatic handling
of previously bothersome stuff, like Ready,
Wait and Done bits.)

Physically all devices are simply attached
to a great sash of wires called a Unibus. (See
Grand Bus box.)

BIBLIOBRAPHY

R.W, Southern, PDP-11 Programning
Fundamentals. {Programmed woOT
Denee "o“‘"’ 00K, o price listed.) Algon-

fok 1 quin College Bookstore, 1385 Wood-
ﬁ o foower roffe Avenue, Ottawa, Ontario,

et joubu,, Canada K2G-1V8.

PDP-11 lookalikes are
sold by Cal Data. Other firms
have been scared off by DEC's
patent, but Cal Data say they
have a patent too.

PDP-11's Unibus
Lockheed SUE's Infibus
PDP-8's Omnibus.

The idea is great in general, For your
home audio equipment, for instance, Grand Bus
architecture would simplify everything.

Not only that, but Detroit is supposedly
going to put your car's electrical system on
a Grand Bus. This will mean you can tell at
once what is and isn't working, and hook up
new goodies easily.

B pects o,

e 43
MAGIC Mobes

Minicomputers are cramped, and so the basic
problem in mini architecture is how to cram into
the instruction enough choices for getting around
in core memory.

In designing the PDP-1l, Gordon Bell and his
co-workers systematically sought a powerful sol-
ution, simulating various possible structures by
computer program, trying out a variety of differ-
ent combinations and structures.

The elegance and power of the solution are
little short of breathtaking. Basically the PDP-
11, the final design, provides seven different
types of indirect addressing. The computer's
main registers may be used both to operate on
i (the usual ique, here called
mode zero), or to point to locations to be oper-
ated on (indirect modes 1 through 7). These
provide extremely efficient means for stepping
through tables, PUSH and POP, dispatch tables,
and various other programming techniques. The
following diagram is meant for handy reference.

tomma
 pragan

@
S e

::"fmd' X(®)
)

There are a lot of strange computers being
designed-- it's a traditional occupation of
electronics professors and a great way to soak
the Defense Department—- but this one is com-
mercially available. Now if we just knew what
to do with it.

Goodyear's STARAN is
mputer with a C Ad
which is actually very hot stuff.

B Bxeifing New hbirdie
51t

available
Memory

the first
d ble ,
Instead of

having to search for a particular item of infor-
mation in core, or having to make lists of where
in core things are being put, or creating linked
data structures (see p. 2(), the program can
simply ask all items of data having particular
properties to step forward.

Genq
Felt

|
i
i
|
i

ok ver |

i

,Zf 6- Llrwo:j

Meodia | kds
FC/)&T"A b5 plos 4ot
G Be [at L} Pls
whelhar (R sfoT o5 ehr‘fw

It works like this.. Having an immense 256~
bit word to play with, the programmer uses dif-
ferent parts or "fields" of the word (see p.
to specify what other information is in it:

Pt
i) Im‘ oJe. Dera
deserppr

With a single command, the program may ask
all words in memory to clear a particular field,
or set a particular bit. Then with another com.
mand it can tell all memory locations with par-
ticular identifiers to add a certain number to
their data, and this occurs in a couple of micro-
seconds. Or it can direct all memory locations
having particular identifiers to multiply one
section of their data by another-- which takes
rather longer.

This is an entirely different kind of pro-
gramming, and considering how much thought com-
puter people have given to doing things one at a
time, it kind of sets you back a little. The
brochure lists these possible applications:
"ballistic missile defense,” "intelligence data
processing,” “electronic warfare," "airborne
command and control," as well as more peaceful
applications like weather prediction, data man-
> portation reservations, air traffic
control. Truth is, most computer people would
have to scratch their:heads quite a while to fig-
ure out how to start using this fascinating ma-~
chine for any of these things; the reason the
military applications seem to be so many is sim-
ply that the military computer types have been
scratching their heads longer. We might as
well start too, and find some of the nicer things
to do for humanity with it.

Bibliography: Jack A. Rudolph, "A Production
Implementation of an Associative Array Pro-
cessor-- STARAN," Proc. FJCC 72, 229-241.

Contact: Computer Division Marketing, Goodyear
Aerospace Corp. Akron, 0. 44315.

2, M.z)

11"
I Y

PO (“Procesmr Elemads’ — wels o L-flodyel
co»‘,q"

[V EN

5,

The 1lliac IV is the biggest and most
extraordinary computer in the world, knock

wood. To most computer people it's as big as
LLL%‘_‘ ol anything they want to think about.
3
| boela The Illiac 4 consists of sixty-four big-
\ Z: “":‘ gish computers, all going at once under the
' ;:;;A) supervision of yet another big computer, typ-
ically all working on a single problem. It

is the brainchild of Daniel Slotnick, who
worked on the theory of array computers and
pressed for its creation for years; eventually
built by Burroughs, it sits at an airbase but
is available to outside users through the
ARPA network.

In principle the idea is this: certain
classes of problems, especially those involv-
ing very large arrays and matrices, can be
run only rather slowly on ordinary computers.
If, however, a computer is built which itself
is an array, certain operations can take place
very much faster because they happen in paral-
lel units simultaneously. Matrices, partic-
ular formal kinds of array, are used in a
great variety of mathematical-type applications.
For instance, weather prediction. It seems
that the theory of weather prediction has been
well worked out for decades, but because the
swirly behavior of the atmosphere is so intri-
cate, actually calculating out everything in-
volves billions of operations. At one confer-
ence session I believe it was explained that
it used to take twenty-five hours to predict
the weather twenty-four hours in advance, whi
which means you get the answer an hour after
it's happened already; now it is possible,
using Illiac IV, to do the whole planet's wea-
ther in an hour and a half, said the speaker.

Some say that may be its only use and
the whole project was inadequately thought
out. Others suspect it's really intended as
a radar-watcher for the ABM system.

Anyway, there it is. And the individual
briefcase-sized Burroughs machines, if they'rc
ever marketed, may provide a new price break-
through for small highpower systems.

——
Incidentally, "Illiac" is the traditional

name for computers built at the University of
Illinois. Will the series end with this one?

BIBLIOGRAPHY

Daniel J. Slotnick, "Unconventional Systems.'
Proc. SJCC 1967, 477-481.

M g..% L] [oq
3

T~

Whitorer eleeines) fangle
(onsle w‘-‘q‘?\r)v wat
BN e

An interesting but little-known computer
was the Ambilog, made by Adage, Inc. of Bos-
ton, a most innovative machine first marketed
in the mid-sixties.

The Ambilog is a hybrid computer, i.e.,
both digital and analog (ote Analog Compu-
ters, p.lQ , it was mentioned that "analog
computers' are any electrical circuits set up
to produce a result according to some formula).
For certain types of repetitive functions,
analog makes a lot of sense. Thus the Adage
people put this machine together for highly
efficient hybrid computing.

was to have a highly
could take in and put
signals at high rates.

The essential idea
ventilated machine that
out measurable electric
What they created was a rather straightforward
digital computer with a lot of registers and
converters to send analog information out and
bring it back in. This meant that problems
suited to repetitive electrical twisting and
measurement could gush out through special
analog circuits, and the '"answers" or doctored
signals could gush back in.

The instruction-set was designed for this
high-speed management of input and output.

The principal applications th@s equigment
has been used for are three-dimensional dis-
play (see Adage Display, p.gﬂDO)'and.Fourler
analysis for sound and other applications (see
P OMEA 1-OMIL).

CELLIAR 7STEMS

» - =
T & fmi

fome wailtr couln|

-7
'
\

Now that integrated circuits are getting
cheap, the distinction between registers (where
things happen to information) and memory (where
nothing happens to information) can be recon-
sidered. Storing information in cells that can
themselves perform actions, or having numerous
subsystems in which computation takes place,
leads to a fascinating variety of possible ar-
chitectures. These are generically called
"cellular" computers; this is slightly ironic
considering that the living cell itself is now
known to Le at least a digital memory, and prob-
ably more (see p. (0O).

Examples of cellular computers mor2 or less
include STARAN, ILLIAC IV and the author's own
hypothetical FANTASMtm (see pY*38). But this
type of architecture has barely begun.

43

Comments,

Some Popular Minis

Company

1
5 £4
. g8
3 §§
E] Eg [2& 2
2.8 8% 1 is 2
368% EF o 22a8 £
DaEs M §8 2592 <.
geg® 5. &2 3T oo
=% S8 7] 2 o|le 3 S
2% QB §" s°ﬂ° E-R-1
£83 5 2j £ =2
iR I
gep gi 23 sgsls &5
gg_ o @ gg 3.=g|> T
‘0 a 33 ;'8 ﬁn‘hg Es
o
S
I
»
L2 g . 3
- L]
ig il 2
55 3% a5 g
5 ~33 Zg2 23 o g
g o3z =2 2
5 £33 3. 838 8% 3 @ -
& =83 32§ %% g, 3 3 §
S5 88s 2 o g
% oa=s SE §BE s & 2
i L4l g% sEy 885 s ¢
o
§ BEE g7 §5° 58y g 3 ¢
g e £
S iq iE: s 8
i FIEPER I FLI S
a X 1’1 29 234 sg‘i 55
o B ob
L2 R & &
i $% 3:2 I 15 3¢
B g3 333 ERE §E5 2

Houston, Texas 77001

« B g :
. 13
S g 3 o £33 E N)
” o Xd ~f
= wh b - ~ s fo S,
&8 88 3] L I T .
= A 2E ¥ 33 BT 2 g
§ €ga = 3 o 832 o3¢ ; = &
S X 8%, 2. 832 ;& 8 0z 8.
z g§E H 2B gdgg .8 wow zas % §2
P-4) E= 3 .
H KA r ief jEl G fsxi 8 L2 ¢
S aa f b1 - FE-R K
> §2 g = 838 R gadg o 4 [$)
g x fa. § s8c 59 pi-g azf °Eg2 oqF 28
§ -4 AN 9 Lom EER *%amw g8 . BoE) & g
3 g8 SERE 83 S35 fSé33 £%% g ggg? £ S8z 3
£ sl LEE : gE Y g &5 L83 B & < sEwt 3 v¥y x
% £ 85 3 g8 283 3§85 ST = £538 (8 $4° %
g 28 g8z § §°F §92 3822 gsx @ 853 g 5%< £
1Z} o . Qo
E] Ag 35
3 ° S
——— WHERE YO GET MINICOMPUTERS. «—— 2 e §sf
. [~ B o< o
. -, « 3) Q
3 bems n meowplefe, 4ot wt-bad, 2 2
) [is] o monvhactorers, 'g, o
g = 4
3 3 - 2 $
- 2
3 3 Z z : 3
@ 3 © 2 A~ ~—
g, 22 g 3 3 = g S = g 5 23 X
‘5}3 a3 N = = K] 3 2 8 K g ©© 282
@ © o < Fl = & - - 888 oo
5 cc & © © K] 2 o « g M co T =8
£ g @ K 2 ™ o <] 2gme RHeow I
o © o Q H ~ = = g @ -3 ot
=% o & © o} Py < ~ S 3 ® SR EE A5 QO
g0 T g = - a 3 5] 2 = 3 “mgs 97T << 8
$2 98 o g2 5 %I E 5§ ¢ g I EEEE 744 85 B
- aa = S 2 S z @ Hi a S = 20278 maa oo =
0
]
o =
) g o 3 a
a2 -1 . @ 23 = 3
° g - ¢ = " .. 2%8 . 3 8
=2 : @
4 3,3 gg.%3 £ 8 £ 2 228 g 8 -3 7 3
< 9 . Sk o b3 Qo &
s £ 02 & @ & w3 . e g .6 >¥®4 5% .25 £m
= 8 o -g-ﬂ 2% o Sew E [N~ -:3 o< s
gS S3E £55 1EEd §%F .8 98F i3 s3n 2Ap Bl P
M > 2 = E o
-» oES @ 14 3] 39 w, EES §°0 sHe FeH 3 <]
gR% 355 £Ed faE; 58 Ccg 58° $. 2Ad EEL ¢33 it = o
By PET AT 4393 £§y B22 294 9% fef fif R3g 0 B8 5 i
- ®Q) 3 :
g8 S3% Wx3 gzié 2<% 2 § §%; 22 5% 2z g.: 943 3% i R
] 42 A o <1 z8 5o o 3,9 8 o 5
§5% 153 35 335y f3F s oBf §y gE; $Ey iz igp EE f i 3
£ S5 -3+ _s‘ b3 gad gnz g=4 g gu& 3% dta 2 g g g

467 Sylvan Ave.

Engelwood Cliffs, NJ 07632

704
706

Raytheon, Inc.

707

bt

A microprocessor simply means

HERE THEY COME — e

MICROPRO eSS !
Conruters INSIDE COMPUTERS

"Big fleas have little fleas that bite ‘em;
And so forth, ad infinitum."
Proverb

Microprocessors are what's happening.

Computers cost several thousand bucks on up.
Microprocessors cost several hundred on up, and
that price range is falling fast.

Some microprocessors are already on integra-
ted circuits, postage stamp-sized electronic
tangles that are simply printed and baked, rather
than wired up; this means there is effectively
no bottom limit to the price of microprocessors.
Mark this well. It means that in a few years
there will be a microprocessor in your refriger-
ator, your typewriter, your lawnmower, your car,
and possibly your wallet. (If you don't believe
this, look what happened to pocket calculators in
the last couple of years. The chip those are
built around costs five bucks. But next come the
programmable chips, the microprocessors.)

Microprocessors should not be called micro-
conguters. a term that seems to have captivated
a treet lately. "Microcomputer" just means
any teeny computer; but there is an exact and
crucial difference between an ordinary computer
(whatever its size) and a microprocessor (what-
ever its size).

A microprocessor is a two-level computer.

You will remember from the "Rock Bottom"
section (pp. 32-3) that every computer has an
internal language of binary patterns or "machine
language" (illustrated in horrendous detail in
the program called "Bucky's Wristwatch," pp.33-4).

Wi %lﬂl”

op
yru-z‘;‘p-»q‘

v |
pilesetir '3

Well, a microprocessor has two levels. It
has an upper-level program follower with its own
binary program; but each instruction of this
upper-level program is in turn carried out by a
program follower funning a program at a lower

level-- called a microprogram.

Core MIMORY.

UPRER LEVEL (SWOv

(stow)

This has some extraordinary ramifications.

First of all, it means that the upper-level
binary language can be anything you want-- that is,
any feasible computer language-- because each of
its instruction$, in turn, will be carried out by
program.

This means, for instance, that machines can
be created which may be programmed directly in some
higher-level lanﬁuaga, such as APL (note Canadian
machine described on p. 2%) or BASIC (note one of
the Hewlett-Packard machines described on p. |7).
The characters in the upper-level program (APL or
BASIC), stepped through by the upper-level program
follower, cause the lower-level program follower to
carry out the operations of the language.

Second, the machine costs less to make than an
ordinary computer. The reason is that the archi-
tecture of ordinary computers is designed now (at
last) for Ero*ranmer convenience. Thus a machine
like the PDP-IT, which in principle does nothing
any other computer doesn't do, is still more desir-
able than most, because its instructions are so
well designed. It is clear and sensible to the pro-
grammer, with the result that programming it takes
less time and costs less money.

Microprocessors reverse this trend. The lower-
level structure of registers and instructions can be
anything that is convenient to manufacture, whether
or not programmers like it. Low manufacturing cost
is one of the main design criteria.

The purpose of microprocessors, you see, is
generally to be hidden in other equipment and do
some simple thing over and over; not to have their
programs changed around all the time as on an ordi-
nary computer.

There are exceptions, computers which have a
second level down where you can put microprograms;
and these are called, sensibly enough, microprogram-
mable computers. They are bought and set up with
TegulaT computer accessories, plus facilities to
change the microprograms. - Thus they cost a lot more;
but oh, they do so much more for you. You can design
your own computer-- i.e., its instruction-set-- and
then create it, with a microprogram. (See the Stan-
dard Tomputer and the Meta-4, nearby.)

HAKDWARE -

equipment itself.

SOFTuh € :

computer programs

FIRMWARE ;

underprograms for
microprocessors. (Also
called Microprograms.

a computer which has, Should be called Underware.)

under the binary langusge

you want to use,

another binary language

that's cheaper to wire up.

TWO LEVELS, TWO SPEEDS

The trick that makes this all work-- whether
for the hidden-away type or the computer type of
microprocessor-- is that the lower level has a much
faster memory than the upper level. This means
that an upper-level word can be taken, and looked
up in the lower level, and all the lower-level steps
carried out, ve fast compared to the upper-level
memory. Many such machines, for instance, have
lower-level speeds in the nanoseconds (billionths
of a second), while the upper-level speeds are mere-
ly in the microseconds (millionths of a second).

A last point. One of the most important char-
acteristics of an ordinary computer is its word
length, that is, the number of binary positions in
a usual chunk of its information.

3-8 woKp (2 bit; see p.40)

Codw) Bk &apuer] (60 L

But since microprocessors have two separate levels,
they often have two separate word lengths as well:
the upper-level and the lower-level.

nuiper
NICeoPROCUR

Contre!
Apener

N v mcreprocesors Tend o heve, At wide
“prcked® nFucdons, where Pt meany o recruers feud
of ndndual Lty sad sectons Z" v; .:,:_;;. .i ;1{,7
depeds pou Tie red, ‘f‘m cirn?lf;,“‘ j

Microprocessors are usually sold in quantity,

to people who are building super-cash-registers or

pinball machines or the like. So their memories

come in many sizes and speeds, to be tailored to

an application. You should know the differences

between--

ROM-- Read-Only Memory. Contents can't be
changed, costs less than changeable (at
any given speed).

RAM-- Rapid-Access Memory. Also called
read-write memory. Same as core memory:
May have its contents changed. NOTE: if
you simulate some computer with a micro-
program, its simulated "registers' are
usually locations in the.lower-level RAM.

RMM-- Read-Mostly Memory. You can get out its
contents fast, but change them only very
slowly.

(The lower-level memory is sometimes called
""program memory" and the upper-level memory is often
called '"data memory, but this is a confusion result-
ing from certain typical applications of the devices,
rather than their inherent nature. You can have
programs at both levels.)

BIBLIOGRAPIIY

Raymond M. ilolt and Manuel R. Lemas, "Current
Microcomputer Architecture." Computer
Design, Feb 74, 65-73.

Summarizes nine teeny machines now
on the market (some 1-level). Good bib-
liography also.

L

—
S

Some MICROPROGRAMMABLE COMPUTERS,*

Standard Computer 18 bits 36 bits Big § Expensive.
Meta 4 16 bits 16 bits Up to 32 hard-
90 or 35 nsec 900 nsec ware registers.
Burroughs 1700 16 bits 24 bits Comes with cassette
60 nsec 666 nsec holding various
emulators.
Lockheed SUE 36 bits 16 bits $650 stripped.
Hewlett-Packard 2100 ? 16 bits Already micropro-
grammed to be like
other IIP computers
-- but there's
space for yours.
as well, $7500.
Microdata 3200 32 bits 16 bits $8000 up ($10,000
135 nsec for model 32/S,
stack-oriented).
Varian 73 64 bits 16 bits $15,000 to $100,000
165 nsec 660 nsec (heavy upgrade of

(190 read-write) Varian 620).
? 16?7

IBM 360 model 25

Prime 200 64 bits 16 bits
160 nsec 750 nsec

Interdata 85 32 bits 16 bits $23,000
160 nsec 320 nsec

Some MicROPROCETORS TO BE 801 LT INTO THINGS.F
(no;]' Aar aeasefes, e, for 4&“&, ;U)

Intel MCS-8 8 to 24 bits 8 bits Stack-oriented (now

900 nsec 12.5 usec faster model).
Intel MCS-4 8 or 16 bits 4 bits Basic chip $60.
900 nsec 10.8 usec
SYS 500 (Weird but interesting wide microprocessor-- circulates
among many separate activites, rather than branching.)
Microdata 16 bits 8 bits
Micro 800 220 nsec 1.1 usec
Micro 1600 200 nsec 1 usec
(read-write)
AES-80 (Auto. Electric 12 bits 8 bits $950 w/o memory

Systems, Montreal) 240 nsec or 1 usec
National Semiconductor $1380 stripped
IMP-16C (8 1/2 x 11-- odd size for computer, convenient for notebook.)
DEC PDP-16M 8 bits 16 bits $2000. (Compatible
w. PDP-11 Unibus.)

240 nsec

16 bits 16 bits
260 nsec 1 usec

Atron 601

*(Abbrevhtions: nsec (nanoseconds, or billionths);
usec (microseconds, millionths; usual weird
abbreviation).)

The history books ten years from now, if any,
will note that the first computer-on-a-chip was pro-
duced by Intel. Intel, an astutely managed company,
chose to make a microprocessor that would be suited
to placement in others' machines at low cost. This
means that if you make a fancy bulldozer or bake-
oven, and want it to have some form of intricate
gre»planned behavior, you'll put "the Intel chip"

n it.

Actually the Intel chip is a number of separate
chips, which start low in cost-- a fairly complete
set can be had for under $500-- and can be assembled
into a full computer. (Indeed, various firms do of-
fer complete computers built out of Intel chips. In-
cluding one the size of an Oreo cookie, guaranteed
for 25 years.)

The original Intel chips are the MCS-4 and
MCS-8, viz.:

Upper level Lower level

MCS-4 4 bits 8 or 16 bits
(10.8 (900 nanoseconds)
microseconds)
MCS-8 8 bits 8 to 24 bits
(12.s (900 nanoseconds)
microseconds)

While these individual chips cost under a hundred
dollars each, memories and other necessary sections
cost extra. For people who want to develop systems
around these chips, Intel has cannily prepared a num-
ber of setups. If you want to go 4-bit, you get the
"Intellec 4," §2200, which also needs a Teletype.
This gives you various display lights and debugging
features. Meanwhile, you can assemble and sinulate
on simulation programs offered on national time-shar-
ing. If you want to go 8-bit, you get the "Intellec
8" for $2400 (also without Teletype), and benefit ad-
ditionally from the fact ‘that you can prepare the
underware in PL/I, and compile it on national time-
sharing.

Crafty and clever Intel, which has captured much
of the overall market already, has now brought out
much faster versions of these chips. Rah.

e Mle'

A computer wittily called the Meta 4 (heh heh)
is a fairly neat machine made by Digital Scientific
Corp., 11455 Sorrento Valley Rd., San Diego CA 92121.

Lower memory: 16 bits, 90 nanoseconds (or 35
nanoseconds, programmed by a card (on’
which you darken the squares.)

Upper memory: 16 bits, 900 nanoseconds.

What this is is a very high-power minicomputer:
it can be turned into a lookalike for any other 16-bit
minicomputer. For instance, they can sell it to you
with an imitative microprogram that turns it effec-
tively into an IBM 1130. From a marketing point of
view, this effectively means a firm owning an IBM 1130
can replace it with a Meta 4 which runs the same pro-
grams, saves money and gives you in addition the bot-
tonm-level features of a far more powerful computer.
(Such an under-level program that makes one machine
effectively imitate another computer is called an
enulator.) This capacity to emulate other computers
Is the "metaphor" alluded to in the machine's name.

Yo [rsoeet) SUE,

The Lockheed SUE ("System User-Engineered
Comp) is a very g and
machine. The central processing unit costs a little
over six hundred and forty dollars! (That's without
memory, power supply or card cage.) It uses a
Grand Bus system of interconnection (see p. Y42).

It's a microprocessor. The lower-level cycle
time is 50 nanoseconds, so it can be programmed to
imitate any microsecond mini.

One nice thing is that you can put together
several cpu's and different memories-- core,

i and ROM-- selecting with swi
which cpus have what priorities in what memories,
as well as interrupts, etc. Darn nice-- especially
considering the upper-level instruction-set.

The microprogram it comes with makes the
Lockheed SUE into a sort of copy (??) of the PDP-11,
including its eight registers and similar address
modes (see p.Y2).

Was the name SUE actually Lockheed's
impudent challenge to DEC? DEC did sue, but no
outcome has been publicized.

e SDID GANTR

A microprogrammable biggie has been available
for some time. It's a 36-bit computer manufactured
by Standard Computer Corporation, 1411 W. Olympic
Boulevard, Los Angeles, CA 90015.

This computer is a serious maching, in the
many-hundred-thousand-dollar class, wl}lch can be
set up to mimic any other 36-bit machine. It has
been sold in two versions: one a pure FORTRAN ma-
chine (that's right, its upper language is pure
Fortran!) and a lookalike for the IBM 7094. Lower-
level word length is 18 bits.

(An interesting puzzle is why this outfit has
not gotten together with Lincoln Laboratories. Lin-
coln Laboratories, outside Boston, has a 36-bit ex-
perinental machine called the TX-2 which has been
used for computer graphics, such as Sutherland's
SKETCHPAD system (see p. ON23) and Baecker's GENE-
SYS (see p.YM 25). Now, presumably Lincoln Labs,
like most other research outfits, is hurting for
money. Why couldn't they make an arrangement for
Standard to sell its machine with a TX-2 emulator,
thus making.available such programs as Sketchpad
(which has never been equalled) to a wider public?

ANRNCED Proseans

In the early throes of computer enthusiasm,
it is easy to suppose that anything can be done
b{ computer-- that is, anything involving the
chewing or diddling of information. This is
decidedly not so.

For instance, it is easy enough, and often
practical, to have a computer do something a few
million times. But it is almost never practical
To have a cbmputer do something a trillion times.
Why? Well, let's say (for the sake of simpli-
city) that a certain program loop takes 1/1000
of a second. To do it a thousand times, then,
‘would take one second, and to do it a million
times would take a thousand seconds, or about
seventeen minutes.. But to do it a trillion times,
now, would mean doing it 17,000,000 minutes, or
over thirty years.

Now, you will note that even if you speed up
that loop to 1/1,000,000 of a second, a trillion
repetitions will take almost twelve days, which
is obviously going to need some justifying, even
assuming that it is otherwise feasible.

(For problems of this type Keople begin
thinking about building special hardware, any-
way. It will be noted, for instance, that the
PDP-16-- see p. S']-- lets you compile your own
special equipment for problems that need eter-
nal repetitions.

COMBINATORIAL EXPLOSIONS

One kind of thing that's too much to do
is generally called a combinatorial explosion--
that is, a problem that "explodes™ into too
many things to do. For instance, consider the
game of chess. Just because you can write a
program to look ahead at all the possible out-
comes of, say, tic-tac-toe, that doesn't mean
you can consider all the possibilities of chess.
To look at "all" the possibilities just a few
moves ahead ‘dnvolves you in trillions of
calculations. Remember about trillions? And
it turns out that there are a lot of problems
like that.

METHODS FOR DOING THINGS]

‘There are really no clear bounds
on "what computers can do."

The problem is always to think up
methods for doing things by computer.
(Also called algorithms.)

Basically what can be done by
computer is what can be done on a
tabletop with slips of paper—- compar-
ing, copying, sorting, marking, doing
arithmstic-- and handing slips of paper
out to users.

So the question should never be,
"How would you do that by computer?”
== but "Can you think of a method
for accomplishing that?" The “computer”
is really irrelevant, for it has no
nature and merely twiddles information

[e

-Then there is the problem of "Turing im-
possibility." Turing was a mathematician who
discovered that some things can be done se-
quentially in a finite amount of time, and
some things can't, such as proving certain
types of mathematical theorem. In other words,
anything that has to do things in sequence--
whether a computer or a mind of God, if any--
cannot possibly know anything which is not
Turing-computable. Another important limita-
tion.

On a more practical level, though, there
are just lots of things which nobody has figur-
ed out how to do in any feasihle way, or are
just now figuring out different systematic ways
of doing. (For a favorite such area of mine,
compare the different computer half-tone image
synthesis systems described on pp. DM 32 to

Thus you see that figgering out ways of
doing stuff is still one o! the principal as-
pects of the computer field. (Whole journals
are devoted to it, such as CACM, JACM and so on.)

But then of course, every few years there
comes a new movement in the field that bodes to
make us start all over.

One such trend is called structured prog-
ramming, being promulgated by @ Dutch research-
er named Dijkstra, among others. The idea of
structured programming is to restrict computing
languages in certain ways and "eliminate the
GO TO," i.e., no longer have jumps to labeled
places in programs. By dividing computer prog-
rams up only in certain ways, goes this school
of thought, the programs can perhaps be Eroven
workable, in the mathematical sense, rather
than just demonstrated to work, as they are now--
a notoriously error-prone situation. If the
Dijkstra school is correct, we may have to
start all over again with a new bunch of prog-
ramming languages.

These remarks give you the flavor of some
restrictions and lines of development. The rest
of this page is devoted to The Great Software
Problem-- the Operating System.

CPERATING-
SusTE

or 0S/360, or 0S

We have no space here to discuss 0S,
the operating system of the IBM 360 and 370,
which is just as well: it is a notoriously
heavy-handed system, elaborated with what
some would call devastating messiness. Kinds
of convenience taken for granted by users of
such computer systems as the Burroughs 5000,
the PDP-10, DTSS and others aren't there.

The programmer has to concern himself
with intricacies having names like ACONs,
VCONs, TCBs, ECBs, and the complications of
JCL. (While these other systems may have
equivalent complications, the programmer
need not mess with them to create efficient
programs, as the 360 demands.) The gro-
grammer must even set aside the previous
programmer's information in "SAVE AREAS,"
which is ‘like a restaurant guest having to
clear the dirty dishes on sitting down--
and ‘return them when he leaves. Several of
the 360's sixteen general registers are con-
fiscated. Time-sharing requires its own
JCL-type language. And so on.

1BM says its forthcoming operating sys-
tem, 0S/VS2-2, will be better.
BIBLIOGRAPHY

A.L. Scherr, "The Design of IBM 0S/VS2 Re-
lease 2." Proc.NCC 73, 387-394.

SYSTEMS PEOPLE
are the folks who bring you the computer.

keep the operating
make the changes it

and software. And change the parts through
which mischievous users crash the system.

rats to users of computer systems. To
each other they often look like harried,
overworked, unsung heroes, their fingers
(and whatever else) in the dike, trying
to hold back the tide of Disorder.

than they get.

CRERATNG ST
EME-SHRRNG

Basically, an operating system is a
program that supervises all the other pro-
grams in a computer. For this reason it is
also called a supervisor or a monitor.
Because the operating system is supposed to
be in charge, many computers now offer spe-
cial wired-in instructions that only the
operating system can use. This prevents
other programs from taking complete control
of the machine.

Operating systems come in all sizes.
The bigger ones take up a lot of computer
time because they have to do a lot. The
smallest kind,which are really kind of
different, are just to help a single pro-
grammer move quickly between his basic
programs. (A typical such system is DEC's
DOS, or Disk Operating System, which you
can get with the PDP-11.) This systenm is
really a kind of butler that keeps track of
where your basic programs are stored on disk
and brings them'in for you quickly.

A step up is the Batch Monitor, or op-
erating system set up for Batch Processing
(see p.3 mir). In batch processing, pro-
grams go through the computer as if on a
conveyer belt, one at a time (or in some
systems several at a time). The operating
system shepherds them.

Batch processing is used when programs
don't need any interaction with human users.
(Or, and this is more common, when human
users want time-sharing but can't get it;
see below.) A mltigrogr-mmg'operating
system is one that allows several different
prograns (or conveyor-belt sequences of
batch programs) to operate at one time,
(This is how most IBM 360s are used.)

—

That is, they're the ones who try to
stem working. And

Systems people often look like dirty

Systems people deserve more thanks

Thank you, systems people.

Then there is time-sharing.

Time-sharing means the simultaneous use
of one computer by several different users
at once. It's basically a complex form of
multiprogramming.

In principle this is like a lazy susan.
The central computer works on one user's pro-
gram for a while, then on another's... until
it is back to the first user.

There are basically two kinds of time-
sharing: time-sharing where you can only use
certain facilities or languages, and time-
sharing where you can use all the facilities
of the computer (including programming in the
computer's assembly language).

Examples of restricted time-sharing are
the various minicomputer systems that are
available which time-share the BASIC language.
(Nova and PDP-11 and ilewlett-Packard, for
instance.)

Some examples of unrestricted time-
sharing are the PDP-10 (see p. 40), Dart-
mouth's DTSS, Honeywell's MULTICS, IBM's TSO,
and General Electric's MARK III.

Bigger is not necessarily better. For
instance, there are time-shared versions of
BASIC that run on big IBM computers. lHow-
ever, it may very well be that big IBM in-
stallations can save money by eliminating
this function and buying instead a small
Hewlett-Packard minicomputer to run their
BASIC on, thereby supplying BASIC to more
users at less cost and freeing the 360 for
whatever it is IBM systems do better.

Restricted time-sharing, with only one
or a few languages offered, is much easier to
provide for than full time-sharing.

Full time-sharing is always shared with
batch. In other words, the computer, darting
among users, still finds some time to devote
to the batch stream.

Time-sharing is self-limiting. That is,
the more users are signed onto a time-sharing
system at a given moment, the more slowly the
system responds to all of them.

Operating systems are big and ‘hard to
Ero'rn. They take a lot of the computer's
me: for instance, Dartmouth's time-sharing
operating system, taking as much as 23% of
the computer's time, is considered efficient.

The importance of time-sharing is not in
terms of '"raw" efficiency, that is, the cost
of each million operations, but in terms of
human efficiency, the ability of each user to
get so much more out of the computer by using
interactive programs and languages.

OPERATING SYSTEMS TRICKERY

Swapping means transferring one user's
program out of core memory in order to move
in somebody else's program. This can happen
very rapidly, and even when it's done to you
every turn, your terminal may seem to respond
as though you are in continuous possession of
the entire computer

Pl‘ini is one of the Great Abstruse
Problems of modern operating systems. The
problem is this: you've always got fast ex-
pensive memory and cheap slow memory. How
can the operating system store most of your
program in choa? slow memory and still predict
which parts you'll need soon enough to get
them in there for you? In the hotter systems,
indeed, the operating system tries to predict
what's most important and move it to a fast
little memory called a cache. This area is
so bizarre and complicate prefer not to
think about it. "Minis for me," says Mr.
Natural.

Ys

Time-sharing prices are a mix
of lois‘ ét““:t " i
. Connec me. s
0 T L “You pay by the hour.
Some TAPORTANT TiMe- SIMRING- SYSTEmS (*") pk) You PRy DY the heur.
Predkin, McCarthy $1.50 (Monmouth County

JOSS (one-language) [NJ] Community College

"Piret & Licklider, 1961 John [von Neumann]'s

. -- the: n
Generation” (on a PDP-1) Own Supervisory System, cong:;t,l:t);,:‘::d :ant
Time-Sharing ~ Rand Corp., late fifties no beginners)

(originally JOHNNIAC 2. "“Core charges'-- essen-

» later PDP-6)

r \

tially the price of
processing itself; de-
~ pends on amount of

“Second Fano & Corbat§, Kemeny & Kurtz' 3
- number crunching.
g.;umuon CTSS ~ | DIss PDP-10 bills this in
ime- (Compatible PDP-6 (Dartmouth Time- kilocore-seconds, i.e
Sharing Time-Sharing System Time-Sharing Sharing System) Row many thousand words
- meaning Started as single- of core memory your pro-
mixable languages.) GENIE language system gram really turns out
Project MAC, MIT, Project, with BASIC, to need, for how many
ca. 1963. Stanford grew & grew seconds .
(sps 940) (e 2’55 later 3. Storage, which costs much.
GE 635-- now made Example: 1000 characters
by Honeywell.) for a month for a buck,
- .) That adds up
"Third - N7 (arpteat:)
Generation” MULTICS ¢ IBM's TSS. -~ 5:::1'. z::sztgttug:og;t:;r
Time-Sharing. (MIT & Splat. (Abandoned.) System now may be your terminal, such as the
i Honeywell.) , (360 model 57% 2 considered Techtran (see'p. Hﬂf})-
Single-language (GE-- now LY Third Generation. X
systems Honeywell-- : i
are now 645.) IBM's TOPS, pret:;"glzogu:::eln hour overall is
commonplace. ce/67. TENEX)

(Late sixties.) Very good.
(Not too widely used,

though.) (360 model 67)

(PDP-10) Note that time-sharing usually

costs less in non-business hours
-- but some exceptions charge more.
IBM's OS/VS2-2.

(Big IBM 370s.)

We're waiting.

- -

WHERE TO GET IT

No way can we here get into the prose and
cons (both senses) of the myriad time-sharing
services that are available. An excellent
summary of fifty-six different time-sharing
services (variously using computers by Honey-
well, IBM, DEC, Univac, CDC, Xerox and
Burroughs) appeared in the February, 1973
Computer Decisions ("Piecing Out the Timeshar-
ing Puzzle™ by John R. Hillegass, pp. 24-32).
This summarizes information available from
Datapro Research Corp., Moorestown,_NJ. 'The
article cautions against the potential high
cost of time-sharing services, and urges you
to get all the advice you can before commit-
ting to a time-sharing service.

—+

BIBLIOGRAPHY
M.V. Wilkes, Time-Sharin Computer S*stems
MacDun;laﬂmencan lsevier Publis ma Co.

All About Timesharing Service Companies.
Datapro Researcﬁ (T Corporate Center,

Moorestown, NJ 08057), $10.

D88

DTSS is the Dartmouth Time-Sharing
System, and let it be an example to us all.

It was created by Kemeny and Kurtz,
who created the BASIC language to be used
on it (see p. 16).

MULTTICS |

MULTICS was announced in 1965 as the
Time-Sharing System of All Time, to be
created jointly by MIT, General Electric
and Bell Labs.

Their computer arrived in fall '63.
Their time-sharing system went ‘into opera-
tion in spring '64, programmed mostly b
Dartmouth students, %xmﬁwn—anﬁ_ﬂzm
proved continuously since then. On that
basis: programmed by students.

It took a lot longer to get going
than they expected-- I have a 1968 (?)
button that says, YOU NEVER OUTGROW YOUR
NEED FOR MULTICS-- but now it's available
from lloncywell. People say it's the
greatest, all right-- its fascinating
facilities include the ability to execute
parts of other people's programs, if you
have pernission-- but it's also said to be
awfully expensive.

It's great.

The Dartmouth computer philosophy--
i.e., the idea carried through by John
Kemeny and Tom Kurtz--was that a comguter
is like a library: its services shou c

ree to a in a community, paid for
through some general fund.

Students and faculty at Dartmouth
use it free. (Unless they have grants.)

. s Interestingly, the MULTICS operating
You can use it too, if you pay.

system is largely programmed in the PL/I
language (see p. 31).

The result: everybody at Dartmouth
uses the computer. It's always running,
(ahem) six days a week. There are almost
two hundred terminals around the campus;
peak afternoon usage is about a hundred
and fifty. Freshmen learn BASIC first
thing, after which the computer is a
standing facility, to bc used in courses
in music, sociology, literature, history,
engineering or whatever; for independent
research; or just for fun and games and
showing off to visitors.

Contact: lloneywell Information
Systems, 200 Smith Street,
MS 061, Waltham, Mass. 02154.

BT AT

The entire Dartmouth system is built) X
Some time-sharing systems are local, others

for simplicity and clarity, with explana-
tions of all the facilities available at have "concentrators" allowing users in other
terminals. (The command explain JGK caus- cities to log into them with local telephone

es the terminal to type out a picturc of calls.

Kemeny.)

Perhaps the most far-reaching time-sharing
system, though, is General Electric's MARK III,
with concentrators in many of the major cities
of the world (mostly Europe). The main com-
puter is in Ohio, but the overall system may be
thought of as an octopus around the globe. Be-
sides hundreds of cities in the USA, The GE
system offers local access in Australia, Austria,
Belgium, Canada, Denmark, Finland, France,
Italy, Japan, Netherlands, Norway, Puerto Rico,
Sweden, Switzerland, United Kingdom and West
Germany .

Many fuddy-duddies insist that computer
usage should be billed, as it is on most
college campuses. That is essentially the
Calvinist view. But what if we treated li-
braries like that? It would probably cost
$10 just to borrow any book. The point is
that IT we believe that certain conditions
are a social good, then we should be flex-
ible about how to implement them. (See Arthur
W. Luehrmann and John M. Nevison, "Computer
Use under a Free-Access Policy, Science, 3i
May 74, 957-961. This article continues this
line of argument and further describes the
Dartmouth billing system.)

What this basically means is that if a
company has offices in these places, it can
do its internal communication through General
ETectric's computer system.

Anyway, Dartmouth will sell you its time-
sharing system for about $7500 a month (and
you'll need a computer setup that begins at
$17,500 a month). That'll run 50 terminals.
A bigger setup will cost more. But that gets
you Fortran, COBOL, SNOBOL, etc., the best
BASIC in the whole world, games, financial
systems, and myriad other programs they've
built at Dartmouth. Furthermore, Mr. Adminis-
trator, it means the system will be available
to users with a minimum of complication and
bother.

This presents obvious merits and difficul-
ties, whicn there is no room to discuss here.
The service is said to be expensive.

They also offer a toll-free number for
program consultation.

Contact:
General Electric Informa-

tion Services
In- Business Division,

401 North Washington §t.,
Rockville, Md. 20850.
IBM's "TSO", for Time-Shared Operating
System, is an odd sort of time-sharing they
have come up with for the 370.

A number of companies have bought.
cluding the U.S. Naval Academy at Annapolis,
which offers Dartmouth-style computing to
its midshipmen.

Connect charge is $2 to $9 an hour
depending on your terminal
speed, plus processing charges.

Contact: DTSS, INC., Hanover NH
03755. (Several commercial
firms also offer DTSS to users,
including Computer Sharing Ser-
vices, Inc. Denver; Grumman Data
Systems, Woodbury, NY; PolyCom
Systems Ltd., Toronto.)

It is a sort of interactive batch pro-
gramming. That is, it allows the user at a
terminal to communicate with programs running
in batch mode.

While this is a form of true time-sharing,
(though its detractors tend to compare it with
Computer Conference was the Nostalgia session on the what they call "true" time-sharing, such as
Dartmouth System, DISS. The Old Hands were there—- that on the PDP-10), it has a number of draw-
guys who as kids worked on the original time-sharing backs.
system, and have now become grownups of one sort or
another.

The most enjoyable session at the 1974 National

For instance, on the model 158, a fair-
ly large machine (ca. $50,000 a month-- see

An alarming statement was made at that session p. 38), TSO normally allows only twenty
by Jerome B. Wiener, who said he had been the liaison users.
man between the Dartmouth effort and the computer
manufacturer (not IBM). He stated that he had been
ordered by his company to stop the Dartmouth "experi-
ment" any way he could, or lose his job in three
months. He did no such thing, and (he said) after
being fired continued to help the Dartmouth effort,
holding weekend meetings with others from that com-
pany in his home. He deserves the Frances 0. Kelsey
we-do-our-real-job medal.

The bad feature of TSO most often men-
tioned is its slow response time. That is,
Tesponse may be sometimes good, sometimes
execrable.

IBM is urging its fans to believe that
its next operating system, called 0S/VS2-2,
will be much better.

46

THE HEARTS &ND MINDS
OF CSMPUTER_PEOPLE

Computer people are a mystery to others,
who see them as somewhat frightening, somewhat
ridiculous. Their concerns seem so peculiar,
their hours so bizarre, their language so in-
comprehensible.

Computer people may best be thought of
as a new ethnic group, very much unto them-
selves. Now, it is very hard to characterize
ethnic groups in words, and certain to give
offense, but if I had to choose ane word for
them it would be elfin. We are like those
little people down among the mushrooms, skit-
tering around completely preoccupied with
unfathomable concerns and seemingly indif-
ferent to normal humanity. In the moonlight
(i.e., pretty late, with snacks around the
equipment) you may hear our music.

Most importantly, the first rule in deal-
ing with leprechauns applies ex hypothesi to
computer ptfeople: when one promises to do you
a magical favor, keep your eyes fixed on him
untig he has deliVered, Or you will get what
you deserve. Programmers' promises are notor-
iously unkept.

But the dippy glories of this world, the
earnestness and whimsy, are something else.
A real computer freak, if you ask him for a
program to print calendars, will write a pro-
gram that gives you your choice of Gregorian,
Julian, 01d Russian and French Revolutionary,
in either small reference printouts or big
ones you can write in.

Computer people have many ordinary traits
that show up in extraordinary ways-- loyalty,
gride, temper, vengefulness and so on. They

ave particular qualities, as well, 6f dogged-
ness and constrained fantasy that enable them
to produce in their work. (Once at lunch I
asked a tablefull of programmers what plane
figures they could get out of one cut through
a cube. I got about three times as many ans-
wers .as I thought there were.)

Unfortunately there is no room or time
to go on about all these things-- see Biblio-
graphy-- but in this particular area of fan-
tasy and emotion I have observed some interes-
ting things.

One common trait of our times-- the tech-
nique of obscuring oneself-- may be more com~
mon among computer people than others (see
"The Myth of the Machine," p. ¢ , and also
"Cybercrud," p. §). Perhaps a certain dis-
gruntlement with the world of people fuses
with fascination for (and envy of?) machines.
Anyway, many of us who have gotten along badly
with people find here a realm of abstractions
to invent and choreograph, privately and with
continuing control. A strange house for the
emotions, this. Like Hegel, who became most
eloquent and ardent when he was lecturing at
his most theoretical, it is interesting to be
among computer freaks boisterously explaining
the cross-tangled ramifications of some system
they have seen or would like to build.

(A syndrome to ponder. I have seen it
more than once: the technical person who, with
someone he cares about, cannot stop talking
about his ideas for a project. A poignant
type of Freudian displacement.)

A sad aspect of this, incidentally, is by
no means obvious. This is that the same com-
puter folks who chatter eloquently about sys-
tems that fascinate them tend to fall dark and
silent while sodeone else is expounding his own
fascinations. You would expect that the person
with effulgent technical enthusiasms would
really click with kindred spirits. In my ex-
perience this only happens briefly: hostili-
ties and digagreements boil out of nowhere to
cut the good mood. My only conclusion is that
the same spirit that originally drives us mut-
tering into the clockwork feels threatened
when others start monkeying with what has been
controlled and private fantasy.

This can be summed up as follows: NOBODY
WANTS TO HEAR ABOUT ANOTHER GUY'S SYSTEM.
Here as elsewhere, things fuse to block human
communication: envy, dislike of being domina-
ted, refusal to relate emotionally, and what-
ever else. Whatever computer people hear
about, it seems they immediately try to top.

Which is not to say that computer people

are mere clockwork lemons or Bettelheimian
robot-children. But the tendencies are there.

BIBLIOGRAPHY
Gerald M. Weinberg, The Psychology of Computer
Programming. 'Van Nostrand ﬁeiﬂola.

Systematic treatment in a related
vein,

This case is so classic it's almost a Punch
and Judy show.

One of the nastiest people I have ever met
was the head of for a big: in=
stallation. Several people agree with me that
he delights in telling people they can't do
specific things on the computer, merely for the
sake of restricting them.

Anyway, at this same installation there was
a programmer, let's call him A, who disliked au-
thority, and disliked this director of security,
let's call him B, with a moody passion.

B spent much of his time intensely, obsess-
ively contemplating possible ways that users
might break into the system, and elaborately

def. and into
the monitor. How do I know this? I know this
from A, who constantly went through B's waste—
basket. A still plans incessantly for the day
B will get a big taunting printout, coming un-
expectedly to him off the machine, that shows
him all his secrets are known.

&

A
7/

¥OXXX 00
Xooo x © xox

o
°

Compurer Forpown ¢

Practice saying them loudly and firmly to
yourself. That way you won't freeze
when they're pulled on you.

THAT'S NOT HOW YOU DO IT
THAT'S NOT HOW YOU USE COMPUTERS
THAT'S NOT WHAT YOU DO WITH COMPUTERS
THAT'S NOT HOW IT'S DONE
THAT'S NOT PRACTICAL
HOW MUCH DO YOU KNOW ABOUT COMPUTERS?
WITH YOUR BACKGROUND,
YOU COULDN'T UNDERSTAND IT
LET'S CALL IN SOMEONE WHO KNOWS THIS
APPLICATION (generally a shill)
IT ISN'T DONE
(you know the answer to that one)
and the one I've been waiting tb hear,
IF GOD HAD INTENDED COMPUTERS TO BE USED
THAT WAY, HE WOULD HAVE DESIGNED
THEM DIFFERENTLY.

Unfortunately there is no room here to
coach you on how to reply to all these. Be
assured that there is always a reply. The
brute-force brazen comeSac‘, equally dirty,
is just to say something like

DIDN'T YOU SEE THE LAST JOINT PROCEEDINGS? -

or
OH YEAH? WHAT ABOUT THE x WORK
USING A y?

(where x is anyplace on the map on p. § ,

and y is any current computer, such as a
PDP-10.)

\

//////’\\\

" ... prog s in my
tend to be painstaking, logical,
inhibited, cautious, restrained,

s hodical, and ri

Ken Knowlton,
"Collaborations with Artists--

A Programmer's Reflections,"

in Nake & Rosenfeld (eds.),
Graphic Languages

(North-Holland Pub. Co.), p. 399.

USEFUL, AND POSSIBLY EMBARRASSING QUESTIONS

If the Computer Priests start to pick on you,
here are some helpful phrases that will give you
strength.

I do not want to give the impression that the
Guardians of the Machine are always bad guys.
Nevertheless, sad to relate, they are not always
good guys. Like everyone out to bolster his position,
including the plumber and the electrician, the computer-
man has learned how easy it is to intimidate the layman.

Now, these people are often right. But if
you have reason to question the way things are done--
whether you're a member of the same corporation,

a consumer advocate or whatever-- you are probably
entitled to straight answers that will help settle the
matter honestly, without putdowns. Any honest
man will agree.

Now, these helpful questions, honestly answered,
may elicit long mysterious answers. Be patient
and confident. Write down what's said and sit down
with the glossary in this book until you understand
the answer. Then you can ask more questions.

I am not inviting the reader to make trouble
flippantly. Iam suggesting that many people have
a right to know which has not been exercised, and
there may be some discomfort at first.

HOW DOES IT WORK?
(This question may have to be backed
up as follows: "There are no computer systems
whose workings cannot be clearly described
to someone who understands the basics. I
INSIST THAT YOU MAKE A SINCERE ATTEMPT.")
WHY DO YOU CLAIM IT HAS TO BE THIS WAY?
(SPEAK MORE SLOWLY , PLEASE.)
WHAT IS THE DATA STRUCTURE?
COULD YOU EXPLAIN THAT IN TERMS OF THE DATA
STRUCTURE?
WHO DESIGNED THIS DATA STRUCTURE?

And can I talk to him?
WHAT IS THE ALGORITHM?
WHO IS THE PROGRAMMER?

And can I talk to him?
WHY DO WE HAVE TO USE A CANNED PROGRAM FOR
THIS?
WHY IS THE INPUT LANGUAGE SO COMPLICATED?
WHY DO WE NEED CARDS? WHY CAN'T PEOPLE TYPE
IN THEIR OWN INPUT?
WHY NOT HAVE A SIMPLE-MINDED FRONT END THAT
LETS USERS CONTROL IT THEMSELVES?
WHY HAVE FORMS TO FILL OUT? WHY NOT HAVE
A DIALOGUE FRONT-END ON A MINI?

WHY CAN'T IT BE ON-LINE? A\ o CET Buwsnsfs (see pp. 20-2)7

WHY DOES IT HAVE TO BE THAT BRAND OF COMPUTER?
WHY NOT GET A SYSTEM WITH LESS OVERHEAD?

WHY SHOULD ALL COMPUTER OPERATIONS BE CENTRALIZED?

DON'T THEY GET IN EACH OTHER'S WAY?

WHY DOES IT ALL HAVE TO BE ON ONE COMPUTER?
WHY NOT PUT PART OF IT ON A DEDICATED MINI?
WHY CAN'T WE DO THIS PARTICULAR THING ALL

ON A MINI?

WOULDN'T IT COST LESS IF WE GOT A MINICOMPUTER
FOR THIS TASK?

WHY CAN'T THIS BE PROGRAMMED IN SOME LANGUAGE
LIKE BASIC?

YOU KNOW AND I KNOW THAT COMPUTERS DONT
HAVE TO WORK THAT WAY. WHY DO YOU CHOOSE
TO DO IT THAT WAY?

If these suggestions seem unnecessarily contentious,
it is because some of these guys like to pick on people,
and you may have to be ready. And you may need
all the support you can get, if, say, you take a stand
like one of these:

"If the information is in there, I don't see why
we can't get it out."

"You have no right to ask questions like this,
and if the program requires it, change the program."

Remember, ILLEGITIMIS NON CARBORUNDUM
(don't let the bastards grind you down)

"For me it always comes down to a personal
challenge: not just to create a program that meets
the specifications, but to do it in a way that I
find aesthetically pleasing."

Robert H. Jones 1V,
a heavy programmer at Chrysler

PROGRAM, NEGOTATiON

A very important kind of discussion takes
place between people who want computer programs,
but can't write them, and people who can write
them, but don't want to. Or, that is, who don't
want to get caught having to do a.lot of unneces-
sary work if it could be done more simply.

Program negotiation, then, is where the
“customer'-- he may actually be the boss~- says,

"I want a program that will do so-and-so,"'and
the programmer says, "I'd rather do it this way."

In a series of requests and counter-offers
the customer explains what he wants and the pro-
grammer explains why he would rather do it a dif-
ferent way. It is essential for both sides to
make themselves completely clear. Often the cus-—
tomer thinks he wants one thing but would be
quite satisfied with another that is much easier
to program. Often the programmer can make help-
ful suggestions of better ways to do it that will
be easier for him.

Very bad things can happen if program nego-
tiation is not done carefully and honestly enough.
The can mi and create some-
thing that was not wanted. Or the customer can
carelessly misstate himself and ask for the wrong
thing. Or worst of all-- the programmer can de-
liberately mishear and do something different,
saying, "There, that's what you wanted,” as he
hands over something that isn't what was really
asked for. And the poor customer may even believe
it (see "Cybercrud," p. 8).

Program negotiation should be more widely
acknowledged as a difficult and painful business.
It is exhausting and fraught with stress; people
(on both sides) get all kinds of psychosomatic
symptoms (like abdominal pains, tics and chills).
The fact that people's careers often depend on
the outcome makes the atmosphere worse, rather
than fostering the thorough and sympathetic coop=
eration which is essential.

If there is one thing that laymen in business
should be taught about computing, this is it.

“1 CANT BEAR HEAT,” REMARKED LANGWIDERE

THE MEETING OF THE MINDS

The Customer,

Naive Advocate The "Expert"
or Chump

—
“ \

What you've gotta
is that there

I don't see why
since it's a
These are not details are problems involved...
that concern me... It can't be that
These are just way...
technical issues... Leave it to me, it'll
I mean a computer be just what you want...
can do all these things,
can't it?

Comeuppance: the customer will get what he deserves.
Moral: if you want something, you'd better damn well
negotiate it at the detailed level.

The 1 of comp

g guag people makes
more sense than laymen necessarily realize.
It's a generalized analytical way of looking
at time, space and activity. Consider the
following.

"THERE IS INSIGNIFICANT BUFFER SPACE IN
THE FRONT HALL." (Buffer: place to put
something temporarily .)

"BEFORE I ACKNOWLEDGE YOUR INTERRUPT, LET
ME TAKE THIS PROCESS TO TERMINATION."

"COOKING IS AN ART OF INTERLEAVING
TIME-BOUND OPERATIONS." (.e., doing
parts of separate jobs in the right order
with an eye on the clock.)

THoSE ADORABLE
INFURIATING

RESISTORS.

Their name makes people think they're a war protest group,
but actually the R.E.S.I.S.T.O.R.S. of Princeton, N.J. are a
bunch of kids who play with computers. They're all young; members|
are purged when they finish high school. Their clubroom is at
;! Uni ity , but the iative is strictly theirs.

The name stands for "Radically Emphatic Students Interested

in , T gy and Other Re h Subjects." C s
are not all they do--they've also gotten into slot racing and the
game of Diplomacy-- but computers are what they're known for.

The Resistors (let's spell it the short way) exhibit regularly at
the computer conferences, and have startled numerous people
with the high quality of their work. They've been invited to various

1=
conferences abroad. They have built various language processors V [

and done graphics; lately their fad is working with the LDS-1
in Princeton's Chemistry Department.

Steve
at the old
straight 8.

oy

Where do they learn it all? They teach each other, of course.
Newcomers hang around, learn computer talk, work on projects,
and tease each other. They also use the informal trade channels,
subscribing to magazines and filling out information request
cards under such company names as Plebney International Signal
Division and Excalibur Wax Fruit.

The great thing about these kids is their zany flippancy .
They've never failed, they've never been afraid for their jobs,
and so they combine the zest of the young with their expertise.
Their forms of expression are as startling to professionals as
they are to id don't say anything ponderously if it can
be said playfully. Don't say "bit field" if you can say "funny
bits; " don't say "alphanumeric buffer" if you can say "quick brown
fox box;" don't say "interrupt signal” if you can call it a "Hey
Charlie; " don’t say "readdressing logic" if you can say "whoopee
box ."

What's a

group like you
doing at a
Joint like this?

Now here's my plan...

A coven of R.E.S.I.S.T.0.R.S.
in executive session,
Atlantic City

They have varied backgrounds. The father of one is a butcher,
the father of another is one of the country's foremost intellectuals.
(None of that matters to the kids.) I have dined in a number ot
their homes, and find this in common: their parents show them
great respect, love and trust. Indeed, Resistor parents have
expressed some surprise to learn that their children's work is
at the full-fledged professional level. The important thing, to
the parents, is that the kids are working on constructing things
they enjoy .

R.E.5.I.5.T.0.R.S.
after infamous
Omega ceremony.

The trade press is i toward the Resi s. On
the onc hand they make good copy. (At one Spring Joint they
had the only working time-sharing demo-- on a carpet next to
a phone booth.) On the other, they sometimes scem bratty and
publicity-hungry, like many celebrities. (At another Spring
Joint they dug up an IBM Songbook and sercnaded the guys at
the IBM pavilion, who had to act nice about it.) So they don't
get written up in computer magazines so much anymore.

1 first met the Resistors in 1970, and started hanging around
with them for two reasons. First, they are perfectly delightful:
enthusiastic in the way that most adults forego, and very witty .
To them computer talk was not a thing apart, as it is for both out-
siders and many professionals.

Sccondly, and this was the sclf-secking aspect, 1 noted
that these kids were quite expert, and interested in giving me
advice where computer professionals would not. They got interested
in helping me with my (perhaps quixotic) Xanadu'™ project (sce
flip side). This was enough to keep me visiting for a couple of
years. Now, some people arc too proud to ask children for informa-
tion. This is dumb. Information is where you find it.

The last [heard, the Resistors were at work in a COBOL
compiler for the PDP-11, hoping it would save the local high school
from the disastrous (to them) purchase of an IBM 1130. (Since
the school's intent was to teach business programming, they hoped
that the availability of COBOL would cncourage the school to buy
the more powerful and less expensive PDP-11.)

The Resistors are few, but I think they are very important
in principle, an existence proof. They show how silly and artificial
is our edifice of pedagogy, with all its seq and sterilizations,
and how anybody can learn anything in the right atmosphere,
stripped of its p ities. The Resi 'S are not ok d with

computers; their love of computers is part of their love of everything.

and everything is what computers are for.

RCSISTORS. Aneeddes, Y

Lauren, 14, was talking to another girl at the ACM 70 con-
ference. A passerby heard her explaining the differences among
the languages BASIC, FORTRAN, COBOL and TRAC. "How long
have you been programming?" he asked in surprise. "Oh, almost
a month," she said.

* * *

I was driving some Resistors around Princeton; they were
yelling contradictory driving instructions. "I demand triple re-
dundancy in the directions," I said. "Right up ahead you turn
right right away," said a spokesman.

Since there was a lot of excess capacity, the Resistors got
a free account on a national time-sharing system. Though they
didn't have to pay, the system kept them informed on what they
would have owed. In a year or so they ran up funny-money bills
of several hundred thousand dollars.

Did they rate free subscriptions to computer magazines?
I asked. Could they claim they really "make dccisions affecting
the purchase of computers"?

"Of course we do!" was the reply. "All together: shall
we buy a computer?"

Resistors (in unison) "NO!"

* * *

Their original advisor, whom we shall call Gaston, is mis-
chievous in his own right. It was meeting-time at Gaston's place
on a bright Saturday, and I was on the fawn working on Xanadu
with Nat and Elliott when Gaston interrupted to say that an unwelcome
salesman of burg lar alarms was about to arrive. "Let's have
a little fun with him," said Gaston. The kids were to be introduced
as Gaston's children, I was an uncle. We took our stations.

The salesman may have realized he was walking into a trap
from all the strangcly beaming adolescents that stood in the living
room. He got out his wares and started to demonstrate the burglar
alarm, but it didn't go right. Peter, standing in front of the equip-
ment with a demonically vacuous grin, had reversed a diode behind
his back so that the alarm rang continuously unless you broke
the light beam.

"Humpf," said Gaston, "you want to see a real security
system?" We trooped into the kitchen, where Gaston kept a Teletype
running.

ANY NEWS? typed Gaston.

CREAM YELLOW BUICK PULLED INTO DRIVEWAY, replied
the Peletype. JERSEY LICENSE PLATE . . . (and the salesman's
license number), and finally, OWNER OF RECORD NOT KNOWN.
John was typing this from the other Teletype in the barn.

The salesman stared at the Teletype. He looked around
at our cherubic smiling faces. He looked at the Teletype. "That's
all right,” said the salesman. "But now I'd like to show you a
rcal sccurity system. . ." And it was back to the old burglar
alarm.

GADELNES R
WRITERS #ND SPOKESMEN

The public is thoroughly confused about
computers, and the press and publicists are
scarcely free from blame. IT'S TIME FOR EX-
PLANATIONS. People want to know what computer
systems renllﬁ do-- no more of this '"latest
space-age technology" garbage. Mr. Business-
man, Mr. Writer, are you man enough to start
telling it straight?

The computer priesthood, unfortunately,
often wants to awe people with, or unduly
stress, the notion of the computer being in-
volved in a particular thing at all. It is
time for everybody to stop being impressed by
this and get on with things. Don't just copy-
edit what they give you. Nose around and
really find out, then write it loud and clear.

These simple rules are my suggestions for
bringing on more intelligent descriptions
that will help enlighten the public by osmosis.

1. FIND OUT AND DESCRIBE THE FUNDAMEN-
TAL APPROACH AND PHILOSOPHY OF THE PROGRAM.
This can invariably be stated in three clear
English sentences or less, but not necessarily
by the person who created it. THIS IS WHAT
WRITERS ARE FOR: it is your duty to probe un-
til the matter has become clear.

Examg les.

"This chess-playing program evaluates
possible moves in terms of various criteria
for partial success, and makes the move which
has the highest merit according to these
ratings."

"This music-composing program operates
on a semi-randem basis, screening possible
notes for various kinds of attractiveness..."

"This archaeological cataloguing system
keeps track of a variety of objective features
of each artifact, plus information on where
it was, including linkages indicating what
other artifacts were near it."

What or whose computer is used to do a
thing is of almost no concern (unless it is
one of unusual design, of which there are com-
paratively few). Not the make of the compu-
ter, but the GENERAL IDEA OF HOW THE PROGRAM
OPERATES, is the most important thing.

0f course, if you are being paid by a
hardware manufacturer, you'll have to name the
equipment over and over; but recognize that
your real duty is public understanding, and
put the Facts across. (If you think it can't
be done, read the splendid Kodak ads in the
Scientific American.)

2. Keep gee-whizzing restricted to the
description of a system's psychological effect
on real people. (What impresses YOu may turn
out to be old hat.)

3. Look for angles special to what you're
reporting. Pursuing details is likely to
bring up better story pegs and more human in-
terest. Instead of saying "computer scientists"
have done something, you might find something
more interesting for your lead; how about "The
unlikely team of a biophysicist and a teen-age
art student..." or-- finding what's special--
"Never before has this been done on a computer
so small, the size of a portable typewriter
(and having only some 4000 words of menory)..."

4. Attempt to find out how else computers
are used in the particular area, and mention
these to help orient the reader.

This goes against the exclusivist tenden-
cies we all have when we want to ballyhoo
something. It is a matter of conscience, an
important one.

5. Questions to ask:

What are the premises of your pro-
gram?

What if people turn out to need
something else?

What could go wrong?
And most important: What is that?
IMPORTANT DISTINCTIONS

It is only by clarifying distinctions
that people are ever going to get anything
straight.

6. Do not say "the computer' when you
mean 'the system" or 'the program.”

7. Don't say "a malfunctioning computer"
(hardware error) if the computer functioned
as it was directed on an incorrect program
(software error). (And remember that the
best programmers make mistakes, so that a
catastrophic bug in a system is no sign that
it was programmed by an incompetent, only
that it isn't finished.)

8. (A particular point about graphics.
See flip side.) Don't say "TV screen" if a
computer screen is not TV, i.e., 525 hori-
zontal lines that you can see on the screen
if you look for them. (See p.3»ML versus p.
Dm'2F .) HOW ABOUT: 'visual display screen"?
-- ybu can add, "on which the computer can
draw moving lines," or whatever else the
particular system does.

9. Don't assume that your audience is
computer-illiterate.

10. Don't assume that it can't all be
said simply. Only lazy or hard-pressed writers
are unclear.

11. Do not use cutesy-talk, particular
that which suggests that computers have an in-
trinsic character. By "cutesy" I mean sen-
tences like "Scientists have recently taught
a computer to play chess,'" Mis-Leads like
"What does a computer sound like?" (when talk-
ing about music constructed by a particular
program in a particular way), and awe-struck
descriptions like, "At last the Space Age has
come to the real estate business..."

12. Do not use the garbage term “compu-
terized," unless there is a.clear statement
of where the computer is in the system, what
the computer is doing and how. A "computer-
ized traffic system," for instance, could be
any damn thing, but a "system of traffic lights
under computer control, using various timing
techniques still under development,' says
something.

13. Don't put in clichés as fact, for
example by the use &f such terms as "mathe-
matical' or "computer scientist" unless they
really apply. Do not imply any mathematical
character unless you know the system possesses
it: many programs contain no operations that
can fairly be called mathematical. Similarly,
a "computer scientist" is someone widely or

deeply versed in computers or software, not
just a programmer. (Anyway, if something has

been programmed by an entomologist, it is
probably more interesting to refer to him as
an entomologist than as a "computer scien(lst.")

14. Do not refer to apparent intelligence
of the computer (unless that is an intended
feature of the progra@. Credit rather the in-
genuity of the system's creator. Do not say
"the clever computer." If anybody is clever
it is the programmer or program designer, and
if you think so, say so. These guys don't get
the recognition they deserve.

15. Never, never say 'teach the computer"
as an elliptical way of saying "write computer
programs." Programming means creating exact
and specific plans that can be automatically
followed by the equipment., To say "teach' when
you mean 'program'" is like "persuading" a car
instead of driving it, or making a toilet "cry"
instead of flushing it.

(There are systems, described on the flip

side, which simulate intelligent processes and
may thus’ be said to "learn" or "be taught."
But neither programming nor simulated learning
should be described in a slipshod fashion that
suggests the computer is some sort of trainable
baby, puppy or demon.)

16. Do not imply that something is 'the
last word,'" unless you have checked that it is.

BIBLIOGRAPHY
Ernest Gowers, Plain Words.

This wonderful little book showed
English civil Servants "bureaucratic
writing" was totally unnecessary. Its
precepts-- mainly concerned with calling
a spade a spade (see p. |Z)-- transpose
exactly to the computer world.

T T o T

= ——t "You Blew It,
Kid®—m

x x bad news for
X student

— in their

printouts.

¥ - U. Illinois
| AU PRSP, at Urbana.

18

ComruTeR_

UN & M\ISCHIEF

All kinds of dumb jokes and cartoons circulate among
the public about computers. Then our friends regale us
computerfolk with these jokes and cartoons, and because
we don't laugh they say we have no sense of humor.

Oh we do, we do. But what we laugh at is rather
more complicated, and relates to what we think of as the
real structure of things.

Some of the best humor in the field is run in Datamation;
an anthology called Faith, Hope and Parity reran a lot of
their best pieces from the early sixties. Classic was the
Kludge series, a romp describing various activities and
products of the Kludge Komp Korp ! whose foibl
distilled many of the more idiotic things that have been
done in the field. ("Kludge," pronounced "klooj," is a.
computerman's term for a ridiculous machine.) Datamation's
humorous tradition has continued in a ponderous but extremely
funny serial that ran in '72 called Also Sprach von Neumann,
which in mellifiuous and elliptical euphemisms described
the author's adventures at the "airship foundry" and other
confused companies that had him doing one preposterous
thing with computers after another.

CoMPUTER. PRANKS

Pranks are an important branch of humor in the field.
Here are some that will give you a sense of it.

ZAP THE 94

One of the meaner pranks was a program that ran
orr the old 7094. It could fit on one card (in binary), and
put the p in an i pable loop. Unfor ly
the usual "STOP" button was disabled by this program,

8o to stop the program one would eventually have to pull
the big emergency button. This burnt out all the main
registers.

TIMES SQUARE LIGHTS

One of the weirder programs was the operator-waker-
upper somebody wrote for the 7094. It was a big program,
and what it did was DISPLAY ALPHABETICAL MESSAGES
ON THE CONSOLE LIGHTS, sliding past like the news in
Times Square. You put in this program and followed it
with the ge; the p] board would light
up and the news would go by. Since the lights usually
blink in uninteresting patterns, this was very startling.

This program was extremely complex. Since the
94 displayed the contents of all main registers and trap,
arithmetic and overflow lights, it was necessary to do very
weird things in the program to turn these lights on and
off at the right times.

THE TIME-WASTER

In one company, for some reason, it was arranged
that large and long-running programs had priority over .
short quick ones. Very well: someone wrote a counterattack
program occuping several boxes of punch cards, to which
you added the short program you really wanted run, and
a card specifying how long you wanted the first part of
the program to grind before your real one actually started.

This would blink lights and spin tapes impressively
and lengthen the run of your program to whatever you wanted.

BOMBING THE TIME-SHARE

One of the classic bad-boy pranks is to bomb time-
sharing systems-- that is, foul them up and bring them to
a halt. Many programmers have done this; one has told
me it's a wonderful way to get rid of your aggressions.

Of course, it can damage other people's work (especially
if disks are bombed); and it always gets the system program-
mers hopping mad, because it means you've defied their
authority and maybe found a hole they don't know about.

Here are a couple of examples.

1. THE PHANTOM STRIKES

The way this story is told, one of the time-sharing
systems at MIT would go down at completely mysterious
times, with all of core and disk being wiped out, and
the lineprinter printing out THE PHANTOM STRIKES.

For a long time the guilty program could not be
found. Finally it was discovered that the bomb was
hidden in an old and venerable statistics program
previously believed to be completely reliable. 'The
reason the phantom didn't always strike was that the
Bomb part queried the system clock and made a pseudo-
random decision whether to bomb the system depending
on the instantaneous setting of the clock. This is why
it took so long to discover; the program usually bided
its time and behaved properly. !

Apparently this was the revenge of a disgruntled
programmer, long since departed. Not only that, but
his revenge was thorough: the Bomb part of the program
was totally knitted into the rest of it, it was a very
important program that had to be run a lot with different
data, and no documentation existed, making it for
practical purposes impossible to change.

The final solution, so the story goes, was this:
whenever the rowdy program had to be run, the rest
of the machine was cleared or put on protect, so it ran
and had its fits in majestic solitude.

2. RHBOMB

The time-share at the Labs, never mind which
Labs, kept going down. Mischief was suspected. Mis-
chief was verified: a program called RHBOMB, sub-
mitted by a certain programmer with the initials R.H.,
was responsible, and turned out always to be present
when the terminals printed TSS HAS GONE DOWN. It
was verified by the systems people that the program
called RHBOMB was in fact a Bomb program, with no
other purpose than to take down the time-sharing system.

R.H. was spoken to sternly and it did not hap-
pen again.

However, some months later a snoopy systems
programmer noted that a file called RHBOMB had been
stored on disk. Rather than have R.H. scalped pre-
maturely, he thought he would check the contents.

He sat down at the terminal and typed in the com-
mand, PRINT RHBOMB. But before he could see its
contents, the terminal typed instead

TSS HAS GONE DOWN

But this was incredible! A program so virulent that
if you just tried to read its contents, without running
it, it still bombed the system! The systems man
rushed from the room to see what had gone wrong.

He did so prematurely. The contents of the
new file RHBOMB were simply

TSS HAS GONE DOWN

followed by thousands of null codes, which were sil-
ently being fed to the Teletype, 10 per second, pre-
venting it from signalling that it was ready for the
next thing.

(rliEp

Games with computer programs are universally enjoyed
in the computer community. Wherever there are graphic
displays there is usually a version of the game Spacewar.
(see Steward Brand's Spacewar piece in Rolling Stone,
mentioned elsewhere.) Spacewar, like many other computer-
based games, is played between people, using the computer
as an animated board which can work out the results of
complex rules.

Some installations have computer games you can play
against; you are effectively "playing against the house,"
trying to outfox a program. This is rarely easy. A variety
of techniques, hidden from you, can be used.

When "a computer” plays a game, actually somebody's
program is carrying out a set of rules that the programmer
has laid out in advance. The program has a natural edge:
it can check a much longer series of possibilities in looking
for the best move (according to the criteria in the program).

There is a more complicated approach: the computer
can be programmed to test for the best strategy in a game.
This is much more complicated, and is ordinarily considered

an example of "artificial intelligence” (see "The God-Builders,"

elsewhere in this book).

 (oNMY's GAME OF [1pE

A Grand Fad among p folk in the last pl
of years has been the game of "Life," invented by John
Horton Conway .

The rules appeared in the Scientific American in
October 1970, in Martin Gardner's games column, and the
whole country went wild. Gardner was swamped with
results (many published in Feb. 71); after a couple more
issues Gardmer washed his hands of it, and it goes on
in its own magazine.

The game is a strange model of evolution, natural
lection, h or pretty much whatever
else you want to see in it. Part of its initial fascination
was that Conway didn't know its long-term outcomes, and
held a contest (eventually won by a group from MIT) .

The rules are deceptively simple: suppose you have
a big checkerboard. Each cell has eight neighbors: the
cells next to it up, down and diagonally .

Time flows in the game by "generations." The pattern
on the board in each generation determines the pattern
on the board in the next generation. The game part simply
consists of trying out new patterns and seeing what things
result in the generations after it. Each cell is either OCCUPIED
or EMPTY. A cell becomes occupied (or "is born") if exactly
three of its neighbors were full in the previous generation.
A cell stays occupied if either two or three of its neighbors
were occupied in the previous generation. All other cells
become empty ("die").

These rules have the following general effect: patterns
you make will change, repeat, grow, disappear in wild
combinations. Some patterns move across the screen in
succeeding generations ("gliders"). Other patterns pulsate
strangely and eject gliders repetitively (glider guns).

Some patterns crash together in ways that produce moving
glider guns. Weird.

While the game of Life, as you can see from the rules,
has nothing to do with computers intrinsically, obviously
computers are the only way to try out complex patterns
in a reasonable length of time.

et O,
cel s boru. cd wl v\‘*TL’\&‘”. }ﬁ

2 o 3 ~eyller
u > L) !
oo - g - 80g (o)
88 — 59 (Hvel)
o
a

a o9 o AR
n E,a 2 DDEUI ac(a\)

o

NON-OBVIOUS RESULTS OF SOME SIMPLE PATTERNS:

some die, one blinks back and forth, others become stable.

(Conway's Game of Life programmed for PLATO by Danny Sleator.)

BIBLIOGRAPHY

Donald D. Spencer, Game Playing with Computers.
(Spartan/Hayden, $13.) This includes flow-
charts, programs and what-have-you for some
25 games, and suggestions for more.

A continuing series of game programs (mostly or
all in BASIC) appears in PCC, a newspaper
mentioned earlier.

Stewart Brand's marvelous Spacewar piece, also
mentioned earlier, is highly recommended.

Robert C. Gammill, "An mxamination of Tic-Tac-Toe-
like Games." Proc. NCC 74, 349-355.
Examines structure of simple games
(esp. 3D tic-tac-toe or QUBIC) where forced
wins are possible; and program structures to
play them.

“The Game of Life," Time, 21 Jan 74, 66-7.

(Lifeline, said to be published by Robert T.
Wainwright of Wilton, Connecticut.)

SURNIVAL oF THE FITTEST

One of the stranger projects of the sixties was a game
played by the most illustrious programmers at a well-known
place of research; the place cannot be named here, nor
the true name of the project, because funds were obtained
through sober channels, and those who approved were
unaware of the true nature of the project, a game we shall
call SURFIT ("SURvival of the FITtest".) Every day after
lunch the guys would solemnly deliver their programs and
see who won. It was a sort of analogy to biological evolution.
The programs would attack each other, and the survivors
would multiply until only one was left.

It worked like this. Core memory was divided up

into "pens," one for each programmer, plus an area for
the monitor.

pens e “.w @

snimy [anima)

%ﬂ\i-«l / @ Aml\»\

_SURFIT MONIYOR

Each program, or "animal," could be loaded anywhere

in its pen. The other programs knew the size of the pen
but not where the animal was in it. Under supervision

of the special monitor, the animals could by turns bite
into the other pens, meaning that the contents of core at
several consecutive locations in the other pen was brought
back, and changed to zero in its original pen.

Your animal could then "digest"-- that is, analyze--
the contents bitten. Then the other animal got his turn.
If he was still alive-- that is, if the program could still
function-- it could stay in play; otherwise the animal who
had bitten it to death could multiply itself into the other
pen.

The winner was the guy whose animal occupied all
pens at the end of the run. If he won several times in a
row he had to reveal how his program worked.

As the game went on, more and more sophistication
was poured into the analytic routines, whereby the animal
analyzed the program that was its victim; so the programmer
could attack better next time. The programs got bigger
and bigger.

Finally the game came to a close. A creature emerged
who could not be beaten. The programmer had reinvented
the germ. His winning creature was all teeth, with no
diagnostic routines; and the first thing it did was multiply
itself through the entirety of its own pen, assuring that
no matter where it might just have been bitten, it would
survive.

When word got around that this nude was in a public file on the
time-sharing system, my office-mates scrambled to get printouts of her.
The cleverest, though, had a deck punched. As he predicted, she was
thrown off by the systems people within an hour or so-- leaving the other

. . guys with their printouts, but he had the deck. Now he can put her
OTHER AN\MKL WINNING ‘GEem back in the computer any time, but they can't.

- o o v o) o el D)

METER BITE: Complete. un;
CANNOT SURVIVE, emplete. onity
AFTER 81TE

MTER SELE -twuﬁ

Twitting a program within its own premises

is a jolly aspect of computer fun. This game of
three-dimensional tic-tac-toe was played with a
program running on a minicomputer at the Spring
Joint, 1969. CAUTION-- ADULTS ONLY.

While this example may offend some people, -

it vividly shows how programs may be toyed with
-- in this case, by the mischievous sign-on--

434

YOU MAY TERMINATE THE FOLLOWING PRINTOUT
KEY.

: .

g g

3 3

o]

> >

@ @

g g

g g

<

&)

" "

& S . to make them behave humorously . 2 q -

H 3' f o o o 2

w - .-‘ -

- w o " " ©

§ g ? .o B g g g o

a i ¥ g 2% 2 g 2 g

z z z z = s S B .

- O - O g ! g

¥ 2 g 2 g B2 §2:g ... % % %o xiex 3 S oxigs z 53

L = PEEEEE: : H o iiid o 1393 o Z 1187 z E]
$3 5 33 & 2 58 gz i g L § $8id g éiid g § §éite i
- 134 & u . * e 0w .0 o0 CEC Y

P 3% ¢ §% 8> § g 2e i o® 2 oiiii B i CIEEEE: 2 & £ ifel = 23z
g 2 . = § = IR T S 5 P S S IO S S N 5 5 o & o 8 IE%D 4 o 233
E s B osg o5 I g g nib 38 g 38 1 2 R - TR ¢ R
- 5 =z 3= § F osuf ! 5E 8% P 5§ 2 i s §] TR & 23
g > g “aq ¢ = - H : : % 3 % 3 - z 228
B3 i g F D 000 g aEy TR TTUT By 2y 2oy ¥ oy P s g Bogzs
¥ §§ ¥ §§ ¥ z< Z 8 "s§ o:i:i s @ £5 %119 3% %1i9 8 § fiiv % § g 8 58T s 8% g I3
s 28 s 38 s % g 2 g8% iiid 8% i 8 fiii 8¢ iiid e fiiidg § g ¢ g 2 itii8 E g &8z

YOU CAN TRY SOME OTHER PROGRAMS OR PLAY ANOTHER GAME

WOULD YOU LIKE ANOTHER GAME MR. FUCKER?

VH oF,

How ComtuTeR STUFF
IS %oo.:\mnﬂ) geL>

For the most part, big computers have
always been rented or leased, rather than
bought outright. There are various reasons for
this. From the customer's point of view, it
makes the whole thing tax-deductible without
amortization problems, and means that it's pos-
sible to change part of the pockage—— the model
of p or the more easily.
And big amounts of money don't have to be
shelled out at once.

From the manufacturer's point of view (and
of course we are speaking mostly of IBM), it is
advantageous to work the leasing game for
severul reasons. Cash inflow is steady.

is in
with the customer, and has his ear for changes
and improvements costing more. Compemors
are at a di b the i
capital base needed to get into the selling-and-
leasing game makes competitition impossible.

The

Basically, leasing really may be thought
of as haVing two parts: the sale of the computer,
and banking a loan on it; essentially the lease
payments are instaliment payments, and the real
profits come after the customer has effectively
paid the real purchase price and is still forking
over.

Many firms other than lBM prefer to sell
their p s outright. i are
almost always sold rather than rented However,
for those who believe in renting or leasing, the
so-called "leasing firms" have appeared effec-
tively p ing a banking fi They buy
the computer, you rent or lease it from them,
and they make the money you would've saved

if you'd bought.

IBM, now required to sell its p
as well as lease them, keeps making changes
in its systems which cynics think are done partly
to scare companies away from leasing, since
if you've bought the computer you can't catch up.
(Lerge computers bought from companies that
like to sell them, such as DEC and CDC, do not
seem to have this problem.)

S

MAIN TENANCE

A practical problem of immense importance is “maintenance,"

meaning repair and upkeep of
Lots of guys in Boston and L.A. are having fun making computers,
but here you are stuck in Squeedunk and it doesn't work anymore.

and their ies.

Trying to find people who will fix these things on a stable

basis is a

You can sign a "mai
which is sort of like

he'll fix.

manufacturers, though, it's worse: each manufacturer will only
contract to fix his own equipment.

have to be

This is the biggest point in favor of IBM. Their maintenance is

superb.

There's also something called third-party maintenance: companies
who’1l contract to keep all your hardware -working.

great problem.

" wlth the .

Eventually. If you own equxpment from different

maintained too.)

RCA and

Raytheon are.into that.

THE SEVEN DWARVES AND THEIR FRIENDS

even though the seven keep changing.
are some main ones beside IBM.

The computer companies are often
called "Snow White and the Seven Dwarves,"

Here
I hope 1

haven't left anyone out.

.

Sperry Rand
Honeywell
Burroughs
Control Data

National Cash Register (NCR)
Digital Equipment Corporation (DEC)

Requiescant in Pace:

Univac General Electric
(sold out to Honeywell)
RCA (sold out to Univac)
Corporation (CDC) Philco

General Foods

Xerox Data Systems (XDS; formerly
Scientific Data Systems (SDS))
Hewlett-Packard. (HP)

Data General

Interdata, Inc.
Varian Data Machines

Lockheed

- Star
v REpigy . ent slant.
NigY
R ME WEk o
= D'lr -
INTy Y F'E—iwu CONET
13 Tveg e SURLT Ty ———
':lgg 11y 'ﬁBV'”"“UT Brive N AS ETT
Erast c X
Additio ENERAT 1, Sulc“ S An cu,\,; ,T\fh\l.n\rﬂ\iy AT
’“ln MING gy T FUOW T ELEN a7
% . ' Lug ¢y FFFETTVLQN
Cong £ P -Cug. '
\MEQESS\F #;,fﬁ’“' r’f'“\'h L
Lua Y S, WLy T,
3
calenda® 1547, THa T W"Flv'r 'W T
100, e < su,,,,“ p, NL i NI
throush P o perche cetal P ,:;;u HD“’”’U‘\I 2 s
punny ¥ e The de \ -
b .
ot a;{\ in G“*&‘ ed. S5+ PERE g, T N
ement uncene a copy @ 1
Announce ram PT th anno! duce L
M:c\\“‘ PL Ild\:["ﬁ oioa h::s.::er s
o
with the €0 16 The el
Y
may © £ double Te \
(s page © on ¢ a B4SE
1ar PLOSE e aftet Piliioued BY (e cop © %ﬂ
4 Intesra® ?;d“v'°““°”k‘”%evh““’:og:lnaced ‘[“‘e to prire EvaLyr; o
smplg\“ FORTRAN ent date ¢ cac\\ title c-:tt fro m(;\e able ‘::K .
pe xds . es 3 cel s
ut 18 2 itle €@ am hrases ce array
t.:ztwritii‘; M The “;"“;na sele“:a;”hs to ":?; size oi; the
3! .
one 92: b :n::‘ ance u‘\; o by 0 uc;i:m:x mple. Y
ran ¢ pa att
a“,mbmes :‘: easiwh :esc deck. S€€
T P -
The PrO¥! in the \1ed ove
da P“
d the ve Lns
an (o in is _f;\;ew\\ e words
2 T,
ndeet roduces reindee
santa @ dd et when Mste:‘“ ?hous s ‘b‘{“’;‘b §5.
top!
sevetal“ °s° 'S and HAPFY
ERRY
55.
SnooPY ¢ AN
red ‘“oe‘mes * * M t address:
oopY when M8 ore recent a s8: \
o The deck c/o Computech Systems Inc., .

(And remember, interfaces

& others beyond recollection.

USED COMPUTERS

While in principle there would seem to be
every advantage in buying used computers, there
are certain drawbacks. Service is the main one:
the manufacturer is not very helpful about fixing
discontinued machines, and you may have to know
how to do it yourself. Even with machines still
avsilable, you may have trouble getting onto a
service contract from the manufacturer, since
it "may have been mistreated." (American Used
Computer, in Boston, will usually guarantee
that its handise will be back. into
manufacturer's contract service.) A final draw-
back is price: a popular machine may cost as
much used as new, since they're saving you the
waiting period.

It's kind of unfortunate: otherwise usable
machines get wasted. (But here's waste for
you: certain well-known laboratories, owned by
a profit-making monopoly, smash their used com-
puters if nobody wants them within the lab.
They claim they can't resell them becsuse they
would then be "competing" with the manufacturers.
1 wish the conservationists would get on that one.)

SOFTWARE

Computer programs, or "software," used
© come free with the computer. But IBM turned
around and "unbundled," meaning you had to
buy it separately, and there has been some fol-
lowing of this example. However, for users who
are buying a computer with some canned program
for a particular purpose, prices are obviously
for the whole package; it's people who use the
same for a lot of diffi things’ that
have to pay for individual programs.

(Notes from all over: it seems that all the
surviving numbers of the Philco computer, a nice
machine but very much discontinued, have ei-
ther gone to the state of Israel or to Pratt Insti-
tute in Brooklyn. When I spoke at Pratt they
showed me their Philco machines, chugging heal-
thily, and said they had (think) some four more
Philcos in crates, donated by their original owners.)

There are many smell software companies.
For the cost of a letterhead anyone can stert one;
the question is whether he has anything special
to sell. Some people whomp up programs on
their own which turn out to be quite useful.
(For instance, one Benjamin Pitman offers a
magnificent program in Fortran to generate tex-
tual garbage. It's so good it can be used to
expand proposals by hundreds of pages. He
calls it Simplified Integrated Modular Prose (SIMP)
and it sells for $10. His address is Computer
Center, University of Georgia, Athens GA 30602%)

ANNOUNCEMENTS

An eccentric aspect of the computer field
is the A the by a
(or even individual) that he is planning to make
or sell a certain computer or program. Some
very odd things happen with announcements in
this field. (None of this is unique to computer-
dom, but it goes to unusual extremes here.)

Under our system it is permissible for any
person or firm to announce that he will make or
sell any particular thing, and even if he's lying
through his teeth, it's not ordinarily considered
fraud unless money changes hands. Talk is
cheap. Thus it is common practice in American
industry for people to say that they will soon
be selling hundred-mile-an-hour automobiles,
tapioce-powered rocketships, antigravity belts.

Obviously, to create big systems for intri-
cate management purposes requires a great deal
more effort. Traditionally these are done by
vast procgrammer teams working in COBOL or
the like, constantly fighting with monitor programs
and chewing up millions of dollars. However,
the new Quickie Languages (three shown pp. |(-25)
may offer great simplification of such programming
tasks. Qkay. In the computer world the same
thing happens. The strategy depends on the
announcer's merket position. The little guys
are often bluffing wistfully, hoping someone will
get interested enough to put up the money to
finish the project, or the like; the big companies
are often "testing the water," looking to see
whether there are potential customers for what
they haven't even p to d 1
ments by big companies also have stra!eg‘u: value:
if they anncunce something a smaller guy has
already announced, they may cut him off at the
pass, even though they have no intention of
delivering. That's just one example. The anal-
ysis of IBM's announcements is a parlor game
in the field. It has been alleged, for instance,
that IBM announced its 360 computer long befcre
it was ready to cut off incursions on its cus-
tomers by other firms; Control Data, in a recent
suit, alleged that the Model 90 numbers of the
360 were announced, and then developed, simply
to destroy Control Data and its own big fast
mechines. These are just examples.

Programs are protected by copyright--
that's the only way there can be a software in-
dustry at all-- but since there has been no
court litigation in the field, nobody knows what
the law really is or what it covers. Everybody
agrees that traditional copyright precedent covers
a lot of ground-- "derivative works" definitely
violate copyright, even study guides to textbooks--
-- but no one knows how far this goes.

Same for patents. The Patent Office has
granted program patents, notably the one on
the sorting program of Applied Data Research,
Inc., but The Patent Office has a profound dis-
taste for this potential extension of its duties,
and is telling everyone that programs aren't
patentable, even though they clearly fsll within
its mandate as unique, original prccesses.

People who only read the headlines think
that the Supreme Court struck down the patent-
ability of progrems. No such thing. In other words, caveat auditor.

In this light the patents that the University
of Utah has gotten on the halftone image synthesis
programs of Warnock and Wylie and Romney (see
P.) are of considerable interest. These
patents use the "software-as-hardware" ruse: the
program is described in detail as taking place in
a fictitious machine shown in many detailed draw-
ings whose nebulous character is not readily
seen by the uninitiated: events vaguely takmg
place in "microp
have been neat]y !‘oxﬁted on the Patem thce as

tech re. It's a great game.
The idea is that the claims are so drawn as to
cover not.just the fictitious machine, but any
program that should happen to work the same
way. But such app » though to
previous. patent practices, have not yet been
litigated in this field.

Datamation ran several good articles on
buying computer stuff in its Septem-
ber, 15, 1970 issue.

"Software Buying" by Howard
Bromberg (35-40) and "Contract
Caveats" by Robert P. Bigelow (41-
44) are very helpful warnings about
not getting burned.

Another, "Project Management
Games," by Werner W. Leutert (24-
34) is an absolutely brilliant, blood-
curdling strategic analysis of the
ploys and dangers involved in buy-
ing and selling very expensive things,
such as computers and software.
ANYONE INVOLVED IN COMPUTER
MANAGEMENT SHOULD READ THIS
MACHIAVELLIAN PIECE WITH THE
GREATEST CARE. Anyone interes-
ted in the theory of showdown and
negotiation can read it with a differ-

1819 Peachtree Rd.,
Atlanta GA 30309.

ﬁow (SOME

Clowpurer CompaNies
RRE FINANCED
A PERSPECTIVE

Those of us who were around will never
forget the Days of Madness (1968-9). Computer
stocks were booming, and their buyers didn't
know what it was about; but everywhere there
were financial people trying to back new com-
puter companies, and everywhere the smart "
computer people who'd missed out on Getting
Theirs were looking for a deal.

Datamation for Nov 1969 was an inch
thick, there were that many ads for computers
and accessories.

At the Fall Joint Computer Conference that
year in Las Vegas, I had to cover the highlights
of the exhibits in a hurry, and it took me all
afternoon, much of it practically at a trot. Then,
after closing time, I found out there had been
a whole other building.

It is important to look at how a lot of these
companies were backed, the better to understand
how irrationality bloomed in the system, and
made the collapse of the speculative stocks in
1970 quite inevitable.

A number of companies were started at
the initiative of people who knew what they were
doing and had a clear idea, a new technique or
a good marketing slant. These were in the
minority, I.fear.

More common were companies started at
the initiative of somebody who wanted to start
"another X"-- another minicomputer company,
another terminal company, expecting the product
somehow to be satisfactory when thrown together
by hired help. Perhaps these people saw com-
puter companies as something like gold mines,
putting out a common product with interchangeable
commodity value.

The deal, as some of these Wall St. hangers-
on would explain it, was most intriguing. Their
idea was to create a computer company on low
capital, "bring it public" (get clearance from the
SEC to sell stock publicly), and then make a
killing as the sheep bought it and the price went
up. Then, if you could get a "track record"
based on a few fast sales, the increasing price
of your stock (these are the days of madness,

r ber) makes it possible to buy up other
companies and become a conglomerate.

xA0e
e
ge 0%
‘oA Qe
€ 520 e ® of
RS s of ‘s
et o2 or* o o ooﬁ“"ﬁ st
et on® oot ®
a\oo® A\x‘-’t\ RN .
ov 2% ce? o 209
o e ous A e
s
eNe et ? . ‘e e o8
o 'e ' % (ce
) ne' \ R
v 02 ? s 38!
2,0¢ we [SK) ne ot °
s o
\c® 0 : R °®
W e e o @ o e
gc\o o 3y% o ae¥ e 10 co™ W o
A3 b et = 6 *
oo\ ® o e ~ ®! \9“‘ o o\s“ e“eso‘
™ X0 ' Pl ‘“e\' < o o \\o"' A ‘“\
o ¢ R
e ee ne g
) L of e‘“‘,\o‘i ot ! qne
A% ey
o o
AR o0

s 13
oo™ oV vl ot
gof \ et
'9°“\g o X . AN
Le® o

Yes, it's real.
Life imjitates art
on Route 46, N.J.

It was very difficult to talk to these people,
»articularly if you were trying to get support for
a legitimate enterprise built around unusual ideas.
(Everybody wants to be second.) And what's
worse, they tended to have that most reprehen-
sible quality: they wouldn't listen. Did they
want to hear what your idea actually was? "I'll
get my technical people to evaluate it"-- and
they send over Joe who once took COBOL. I
finally figured out that such people are impossible
to talk to if you're sincere-- it's a quality they
find unfamiliar and threatening. I don't think
there's any way a person with a genuine idea
can communicate with such Wheeler-Dealers;
they just fix you with a piercing glance and say
"Yeah, but are we tdlking about hardware or
software?" (the two words they know in the
field) .

“ITS A WHEELER!"

The joker is that if you missed out on all
this you were much better off. Anyone with a
genuine idea is being set up for two fleecings:
the first big one, when they tell you your ideas,
skills and long-term indenture are worth 2¢%
(if you're lucky) compared to their immense con-
tributions of "business knowhow," and the second,
when you go public and the underwriter gets
vast rakeoffs for his incomparable services. What
is most likely to get lost in all this is any orig-
inal or structured contribution to the world that
the company was intended, in your mind, to
achieve.

In part this is because anyone with tech-
nical knowledge is apparently labelled Silly
Technician in the financial community, or Impos-
sible Dreamer; it is entrenched doctrine among
many people there that the man with the original
idea cannot be allowed to control the direction
of the resulting company. In one case known
to me, a man had a beautiful invention (not
electronic) that could have deeply improved
American industry. It was inexpensive, simple
to manufacture, profoundly effective. He made
his deal and the company was started, under
his direction. But it was a trick. When the
second installment of financing came due (not
the second round, mind you), the backers
called for a new deal, and he was skewered.
Result: no sales, no effect on the world, no
nothing to speak of.

This is all the sadder because the com-
panies that achieve important things in this field,
as far as I can see, are those with' a unifying
idea, carried out unstintingly by the man or
men who believe in it. I think of Olsen's Digital
Equipment Corporation, Data General, Evans and
Sutherland Computer Corporation, Vector General.
This is not to say that a good idea succeeds
without good management or good breaks: for
instance, Viatron, a firm which was the darling
of the computer high-flying stocks, had a per-
fectly sound idea, if not a deep one: to produce
a video terminal that could be sold for as little
as $100 a month. But they got overextended,
and had manufacturing troubles, and that was
that. (You can now get a video terminal for
$49 a month, the Hazeltine.) Of course, a lot
of ideas are hard to evaluate. A man named
Ovshinsky, for instance, named a whole new
branch of electronics after himself ("ovonics"),
and claimed it would make integrated circuits
cheaper or better than anybody else's. Scoff,
scoff. Now Ovshinsky has had the last laugh:
what he discovered some now call "amorphous
semiconductor technology," and his circuits are
being used by manufacturers of computer equip-
ment. Another example is one Frank Marchuk,
whose "laser computer" was announced several
years ago but hasn't been seen yet. Many com-
puter people are understandably skeptical.

This is still a field where individuals can
have a profound influence. But the wrong way
to try it is through conventional corporate fin-
ancing. Get your own computer, do it in a
garret, and then talk about ways of getting it
out to the world. ’

BIBLIOGRAPHY

John Brooks, The Go-Go Years. Weybright
& Talley. $10.

51

52

Tic BEHEMOTH

LB

s b, fetonssh

En‘kmﬁwu-l 35 mm\ﬂ'
E‘i;-B‘iﬁ) Machine Co.
Rrternshons] Bretterhesd P mjchw
'EE’“ Beiva MEove "

AR ack Jaaic.
TuBleakest M%r?{?r
pisfl Beﬁevxamn-]

as wel) os

Melher of Vs Al

The Grim G'n\)Giah"
” Bis Mama Crass
Seeurdy Blanket
Sv\ouw‘b‘e

G’vtv, Mt\ﬂf!

‘.\4

55 &611\9?.

"IBM," as everyone knows, is the trade
mark of the International i hi
Corporation, an immense company centered in
Armonk, N.Y., but extending to over a hundred
countries and employing well over a quarter of
a million people.

IBM dominates two industries, computers
and electric typewriters.

To many people, IBM is synonymous with
computers. Some of the public, indeed, believes
them to be the only computer manufacturer.

In cameras and film, there is Kodak. In
automobiles, there is General Motors. And in
the computer field there is IBM.

IBM sells some 65 to 70% of all the com-
puters and programs that are sold. In this res-
pect, the balanced near-monopoly, they are like
Kodak and GM.

But there are important differences. Ev-
everybody knows what a camera is, or an auto-
mobile. But to many, if not most, people, a
computer is what IBM says it is.

The importance of this firm, for good or
ill, cannot be overstated: whose legend is so
thick, whose stock prices have doubled and re-
doubled, ten times over, to its multibillion-dollar
mass; whose seeniing infallibility-- at least, as
seen by outsiders-- have been the stuff of
legend, whose style has proliferated across the
world, a style which has in a way itself become
y y with P 8;" whose name sym-
bolizes for many people-- remarkably, both
those who love it and those who hate it-- the
New Age.

The rigidity associated in the public mind
with "the computer" may be related in some
deep way to this organization. As a corporation
they are used to designing systems that people
have to use in their jobs by fiat, and thus there
are few external li i on the licati
to our lives that IBM can create.

Many people mistake IBM for "just another
big company," and here lies the danger. IBM's
position in the world is so extraordinary, so
carefully poised (as a result of various anti-
trust p di and pr ions) just outside
of total monopoly of a vitally important and all-
penetrating field, that much of what they do has
implications for all of us. Ralph Nader's con-
tention that General Motors is too powerful to
function as an independent government surely
applies even more to IBM. General Motors is not
in a position to persuade the public that every
car has to have ten wheels and a snowplow.
IBM seems in some ways to have molded compu-
ters in its own image, and then persuaded the
world that this is the way they have to be.

But IBM is deeply sensitive, in its way,
to public relations, and has woven an extensive
system of political ties and legends (if not
mythology) which have kept it almost completely
exempt from the critical attention of concerned
citizens. -

Thus it if necessary here, simply as a
matter of covering the field at an introductory
level, to raise some questions and criticisms
that occur to people who are concerned about
IBM. IBM presumably will not mind having
these matters raised; their public-spirited con-
cern in so'many areas assures that when some-
thing so publicly important as the character of
their own power is concerned, occasional
scrutiny should be welcome.

A FINE PROGRESSIVE CORPORATE CITIZEN
AND A WONDERFUL EMPLOYER

It is important to note first of all that IBM
is in many respects the very model of a gener-
ous and dutiful corporate citizen. In "commun-
it " in to col and uni-
versities, in generous release of the time of its
employees for charitable and civic undertakings,
it is almost certainly the most public-spirited
corporation in America, and perhaps on the
face of the earth.

They have been generous about many
public interest projects, from Braille transcrip-
tion to donating photographers and facilities for
films on child development.

The corporation sponsors worthwhile cul-
tural events. "Don Quixote" with Rex Harrison
on TV was terrific, Katherine Hepburn's "Glass
Menagerie" was marvelous.

They treat their small suppliers honorably
and with great solicitude.

IBM's enli and

toward its employees is perhaps beyond that of
any company anywhere. They have rigorously
upgraded the position of women and other minor-
ity employees; the opportunities for women may
be greater there than anywhere else. They have
upgraded repair of their systems, at any level,
to white-collar status, and tool kits are disguised
as brief . This . making a repair-
man into a "field engineer," is one of the clever-
est public-relations and employment policies ever
instituted.

They are openhanded to employees who
want to run for office, evidently regardless of
platform. In the sixties there were peace candi-
dates who worked for IBM, and evidently got
time off for it. More recently, Fran Youngstein,
an IBM marketing instructor, was a 1973 candi-
date for Mayor of New York on the ticket of the
Free Libertarian Party, opposing all laws against
victimless crimes (e.g. prostitution and odd sex),
as well as Day Care and welfare.

They also rarely fire people. Once you're
in, and within certain broad outlines, it's ex-
tremely safe employment. For those who turn
out not to fit in well, they have a tradition of
certain gentle pressure-practices like moving
you around the country repeatedly at IBM ex-
pense. This encourages leaving, but also ex-
poses the less-wanted employee to a variety of
opportunities he might not otherwise see, without
the trauma and anxiety of dismissal.

(It is said that there are IBM firings, but
they are rare and formidable. Heywood Gould's
description of an IBM firing (Corporation Freak,
pp. 113-115), for which he does not claim au-
thenticity, is nevertheless bloodcurdling.)

IBM's international manners (in its 115
countries) are likewise praiseworthy. Compared
to the perfidious behavior of some of our other
multinational corporations, they are sweetness
and light and highschool civics. Sensitive to
the feelings of people abroad, they are said to
operate carefully within arrangements made to
satisfy each country. They train nationals for
real corporate responsibility rather than bringing
in only outside people. And they are sensitive
to issues: for instance, they recently refused to
set up an Apartheid computer in South Africa.

ONE THING IS PERFECTLY CLEAR:

IBM has no poly on under or sophi

THEN WHY SUCH A RANGE OF FEELINGS
TOWARD IBM?

Among computer people, feelings toward
IBM range from worship to furious hate (depen-
ding only in part on whether you work there).

Many, many are of course employed by
IBM, and the devotion with which they embrace
the corporation and its spirit is a wonder of the
world. '

But the spiritual community of IBM extends
further. Upper g types, especially
Chairmen of Boards and comptrollers, seem to
have a reverence for IBM that is not of this
world, some amalgamated vision which entwines
images of eternal stock and dividend growth
with an idealized notion of management efficiency.
Many others use and live with IBM's equipment,
and view IBM as anything from "the greatest
company in the world” to "a fact of life" or even
"a necessary evil." In some places whole colo-
nies of users mold themselves in its image, so
that around IBM computers there are many "little
IBMs," full of people who imitate the personali-
ties and style of IBM people. (RCA, before its
computer operation fell to pieces, imitated not
just the design of IBM's 360 computer, but a
whole range of titles and departmental names
from out of IBM. The sincerest form of flattery.)

But outside this pale-- beyond the spiri-
tual community of IBM-- there are quite a few
other computer people. Some simply ignore IBM,
being concerned with their own stuff. Some
like IBM but happen to be elsewhere. Others
dislike or hate IBM for a variety of reasons,
business and social. And this smoldering
hatred is surely far different in character from
anybody's attitude toward Kodak or GM.

While it is not the intent here to do any
kind of an anti-IBM number, it is nevertheless
necessary to attempt to round out the one-sided
picture that is projected outside the compufer
world. In what follows there is no room to try
to give a balanced picture. Because IBM can
speak for itself, and does so with many voices,
it is more important to indicate here the kinds
of criticisms which are commonly made of IBM
by sophisticated people within the industry, so
that IBM-worshipers will have some idea of what
bothers people. But of course no attempt can
be made here to judge these matters; this is
just intended as source material for concerned
citizens.

THE GOOD NEWs AND BkD NEWs AgouT IBM

First, the good news Now for the bad news...
They offer many computer pro- These programs are not necessarily
grams for a variety of purposes. set up the way you would want them.

(But if you take the trouble to adapt
to them, you'll probably never get
back.)

The programs favor card or
card-like input and, to date, strongly
discourage time-sharing and widespread
convenient terminal use by untrained
people.

IBM programs are also notoriously
inefficient. (That way you have to use
bigger machines for longer.)

A company or governmental agency The courses indoctrinate with the IBM

can get immense amounts of "help" outlook, and the planted people spread
and "information" from IBM, which it. Moreover, both mechanisms help
offers free courses, even IBM IBM spot the people they can work with
people on "released time" to look to make a big sale-- and (it is alleged

over the problems on the premises. by some) those who stand in the way.

IBM offers various kinds of com-
patibility among its systems. It always seems to cost extra.

IBM equipment is rugged and

durable, and their repairmen

or "field engineers" struggle

with great diligence and alacrity

to keep it running. You may not like the way it runs.

1. SOCIAL ASPECTS OF IBM.

It is perhaps in the social realm, including
its ideological character, that a lot of people
are turned off by IBM.

IBM has traditionally been the paternalistic
corporation. (Paternalistic corporations were
some kind of big philosophical issue to people
in the fifties, but nobody cares anymore. Anyway,
the rest were perhaps inconsequential compared
to IBM.) Big IBM towns not only have a Country
Club (no booze), but a Homestead for the comfort
of important corporate guests. There are dress
codes (although non-white shirts and below-the-
collar hair are now allowed), and yes, codes
of private behavior (now subdued). These irritate
people with libertarian concerns. They do not
bother employees, evidently, because employees
knew what they were getting into.

Generalizations about IBM people obviously
cannot be very strong. Obviously there is going
to be immense variation among 265,000 people,
half of whom have college degrees; but of course
one of the great truths of sociology is that any
non-random group has tendencies.

More than that in this case. In a way IBM
people are an ethnic group. lmpressive indeed
are the general energy and singlemindedness
of the people, galvanized by their certainty that
IBM is true, good and right, and that the IBM
way is the way. This righteousness is of course
a big turn-off for a lot of people. Perhaps it
leads in turn to the most-heard slurs about IBM
people, that they are brainwashed or provincial.

MAJOR IsM compurers T4 Glavce

1950s (TUBES)

650 (Decimal) 700 Series
701
702 (decimal) \‘

705 (decimal) 704 (36 bits)

\ /{ 708

EARLY 1960s \/
(TRANSISTORS!)

7070 7040 7090
1620 7074 7044 7094
(decimal
minicomputer)
1400 series (decimal, STRETCH
accounting-oriented) (64 bits)
1401, 1410... Vs
MID-1960s \ / 4
(INTEGRATED v
CIRCUITS) 360 Series
(32-bit as well as decimal)
1130/1800 Series 20, 25, 30, 40, 44, 50, 65, 67,
(16 bits) | 75, 85, 90, 91...
1970s l/
("MEDIUM-SCALE
INTEGRATION") 370 Series
125, 135, 145, 155, 165, 158, 195...
System 3
(Variable)
System 7

(16 bits)

The same slick marketing could be applied to any other industry.
But it wouldn't be IBM. Nowhere else could the mystery of the subject
be met and enhanced with so many more mysteries.

PROVINCIAL?

There would seem to be no question that
IBM people are comparatively conservative and
conventional. This partly because that's who IBM
hires (though they reportedly urge tolerance of
the ployee in a training film, "The Wild
Duck"). A huge number of IBM people never
worked for anybody else; obviously this affects
the perspective, like staying at one university
all your life, or in one city.

It may also be that because IBM places such
ap on d and new
:ideas (and the abilities needed to generate them)
naturally run into a little trouble. Some critics
find tmong IBM pooplc a heavy concern with con-
. and (unfor-
tunately) seeing tha world stuck all over with
conventional labels and Middle American stereo-
types.

Some of the most amusing material on this
comes from an odd source: & writer named
Heywood Gould who, all unprepared, became a
consultant to IBM, earned unconscionable amounts
of money ($40,000 in six months), and lived to
write a very funny and observant book about it
(see Bibliography) .

But it is necessary on these matters to see
how difficult things can be for IBM people. To be
identified as an IBM person is something like wear-
ing a ring in your nose, a yarmulka or a halo:
an entrapment in a social role that makes the indi-
vidual's position awkward among outsiders. IBM
people often have to take guff at parties, unless
they are IBM parties. Defensiveness may account
for some of the Overdo, and some of the clannish-
ness.

BRAINWASHED?

It is true that IBM people are essentially in
their own world. One theorv is that compart-
mentalization within the firm (rather visible in
their designs) may tend to stifle. Indeed, because
1BM people can expect to be briefed and schooled
in every technical matter they will need to know
for a givan assignment, Lhe incentive to follow

gh outside
and i may be Think
magazine and corporate brlaﬂngs it is possible
for IBM people to be comparatively (or even com-
pletely) unaware of innovations elsewhere in the
field, except as these new developments are
presented to them within the organization. In
this light it is easy to understand the ibmers'
sense of certainty that their firm invented every-
thing and is at the forefront.

Of course many fine research efforts do go on
there, in considerable awareness of what's hap-
pening elsewhere. Particular individuals at IBM
have done excellent research on everything from
computer hidden-line imaging to the structure of
the genetic code and computer-synthesized holo-
grams. APL itself (see pp.22-3), as developed
by Iverson at Harvard and later programmed by
him at IBM, is another example of sophisticated
individual creativity there. So it's entirely
possible. But IBM certainly has no monopoly on
understanding or creativity, and IBM-haters
sometimes talk as if the reverse is true.

1 hope to be able to report in future
editions of this book that IBM hes moved
firmly and credibly toward making its sys-
tems clear and simple to use, without re-
uqulring laborious attention to needless

and rituals.

It's still possible.

One of the things we often forget is
that public-spirited corporations can be
reached, they do listen; and IBM is nothing

if not public-spirited-- except when it
comes to the design of its systems.

I hope that this book will help
people who are inconvenienced by computer
systems to understand and pinpoint what
they think is wrong with the systems-- in
their data structure, interactive properties,
or other design features-- and that they
will try to express their discontents intel-
ligenuy and conuructively to those res-

p ding, where appropriate
Internati i Corporation,
Armonk, NY.

2. SALES TECHNIQUES.

It is IBM's alleged misbehavior in pursuit
of sales that has drawn some of the strongest
criticism within the industry, as well as consid-
erable litigation. Their "predatory pricing"

(a term used by the judge in the recent Telex
decision), and other mean practices, are (whe-
ther true or false) folklore within the industry.

These accusations are well summarized
by "Anonymous" in a recent article (see Biblio-
graphy). Basically the accusations against
IBM's sales practices are that they play dlxty
if you, say, the p in a
firm, want to buy equipment from another out-
fit, IBM (so the story goes) will go over your
head to your boss, accuse you of incompetence,
try to get you fired if you oppose them, and
Heaven knows what else. Anonymous claims
that various forms of threat, intimidation, "hard-
sell scare tactics" and "behind-the-scenes man-
ipulation" are actually standard practice in IBM
sales; he or she alleges various instances in
certain municipalities.

Such behavior is emphatically denied,
though not in relation to that article, by Board
Chairman Cary, in a recent letter to Newsweek
(see Bibliography). Cary emphasizes the impor-
tance of IBM's 76-page Business Conduct Guide-
lines. Whether these are publicly examinable
is not stated.

These charges were also taken up con-
cretely in a recent survey of computing managers
done by Datamation (summarized by McLaughlin
in "Monopoly Is Not a Game;" see Bibliography) .
In Datamation's analysis of this survey, the
managers did not seem to agree with these
charges against IBM. However, it must be
noted-- and this seriously calls into question
the entire survey as analyzed-- that out of 1100
panelists to the questionnaire, Datamation only
considered 389 responses "usable," partly (it is
stated) because many did not give data allowing
themselves to be identified. Considering the

"When we went from IBM to
National Cash Register, it was like
the difference between night and day."

Retired hardware executive,
talking about inventory programs

(Incidentally, it is amusing to note that
even in this remaining company, in terms of
"performance per dollar," the managers surveyed
(and surviving the weedout) ranked the top
three companies as DEC, Burroughs and Control
Data. IBM was worst out of 8. Obviously
service counts for a lot.)

An interesting view on IBM's sales ethics
was expressed recently by Ryal R. Poppa,
president of Pertec Corp.

"In the past, when there have been sales
situations where 'you can't honor the
policy and win the deal,' 1BM has violated
the policy with the practice, he said."

he beli that si ion is changing
under lBM‘s new management, so that the guide-
lines will be observed in the future. ("Poppa
Sees Several IBM Changes," Computerworld,
21 Nov 73, 29.)

The people who take these matters of IBM
sales practices most seriously-- IBM's competi-
tors-- now have their own organization, the
Ci Industry A iation. This is an asso-
ciation of computer companies, which has as
its intention the "establishment and preservation
of a sound and M industry,

based on... free and open compeuuon " Empha-
sis theirs. Translation: they're out to get IBM.
President Dan L. McGurk, formerly of Xerox
Data Systems, has blood in his eye. Member-
ship is open only to computer companies, but
their newsletter On Line is available to indivi-
duals (see Blbhography) Anyone seriously
interested in these matters is referred to them.

3. TECHNICAL DECISIONS AND DESIGNS
A. Prologue.

Part of the myth of IBM's corporate perfec-
tion is based on the notion that technical matters
in IBM's , and
that lHM‘s product offerings and designs thus
emerge naturally and necessarily and inevitably
from these considerations. This is rather far
from the truth.

IBM presents many of their actions as tech-
nical, even as technical breakthroughs, when
in fact they are strategic maneuvers. The an-

of a new p . for .

such as the 360 or 370, is usually made to
sound as if they have invented something special,
while in fact they have simply made certain
decisions as to "which way they intend to go"
and how they plan to market things in the next

widespread fear of IBM in the field, this may

have strongly biased the poll in favor of IBM.

few years.

IR o

IBM controls the industry principally by

controlling its customers. Through various
mechanisms, it seems to enforce the principle
that "Once an IBM customer, always an IBM
customer." With an extraordinary degree of
control, surely possessed in no other field by
any other organization in the free world, it
dictates what its customers may buy, and what
they may do with what they get. More than
this: the exactions of loyalty levied upon IBM's
customers are similar, in kind and degree, to
what it demands of its own employees. IBM
makes the customer's employees more and more
like its own employees, committing them as
individuals, and effectively committing the com-
pany that buys from it, to IBM service in
perpetuity.

Here are some of the ways this system of
control seems to work. We are not saying here
that this is necessarily how IBM plans it;
rather, these are the virtual mechanics, virtual
in the old sense; this is how it might as well
be working. In the anthropological sense this
is a "functional" analysis, showing the tie-ins
rather than the actual detailed thought processes
that occur. And even if these are really the
mechanics, perhaps IBM doesn‘t mean tnem to be.
It might just be a

A. and biliti

IBM acts as if it does not want competitors
to be able to connect their accessories to its
computers. It's as though GM could design the
roads 8o as to prevent the passage of other
vehicles than its own.

This is done several ways. Pirst. IBM
has used to
prevent such i to its sy
either forbidding other things to be attlched
(or at least slapping on extra service charges
if they are), or declaring that it would not
be responsible for overall performance of such
a setup, effectively withdrawing the hardware
guarantee that is such a strong selling point.

Secondly, IBM does not tell all that needs
to Yo known in order to make these intercon-
nections-- the details of the hardware interfaces.

-Finally, IBM can simply decree, perhaps
g y, that
is impossible. For instance, IBM said for a
time that their latest big program, "VS," or
Virtual System, wouldn't work (t.nnslluon
would not be) if
were used on the computer.

Now, there are many manufacturers who
think this is very wrong of IBM; who believe
they should have the right to sell accessories
and parts-- especially core and disk memories--
to plug onto IBM's computers. It has been
generally possible for these other manufacturers
to work these interconnections out awhile after
the computer comes out on the market, but
it's getting more difficult.

Thus the Telex Decision of September 17,
1973, in which it was decreed by the judge that
IBM would have to supply complete interface
information promptly when introducing a new
computer, was a source of great jubilation in
the computer field. However, that part of the
judgment has since been cancelled.

Much the same problem éxists in the soft-
ware area. IBM is less than interested in
helping its competitors write programs that hook
up to IBM programs, so the details of program
hookup are not always made clear. Here, too,
many smaller companies insist they should be
made to do it

B. Control and guidance of what the customer
can get.

To a remarkable degree, if you are an
IBM customer, you practically have to buy what
they tell you. This IBM manages by an intri-
cate system of fluctuating degrees of sales and
support and contractual dealing. The IBM cus-
tomer always has several options; but these are
like forced cards. IBM is always introducing
and discontinuing products, and changing prices
and contractual arrangements and software op-
tions in an elaborate choreography, which applies
calculated pressures on the customer. IBM has
a finely-tuned system of customer incentives by
which it controls product phasing, to use the
polite term, or planned obsolescence, as some
people call it.

(Ryal R. Poppa, president of Pertec Corp.,
predicts that IBM customers will now be re-
quired to switch over to new products every
five or six years, rather than every seven,
which Poppa contends has been the figure.
("Poppa Sees Several IBM Changes," Computer-
world, 21 Nov 73, 29.)

Programs, especially, are available with
different degrees of approval from IBM. The
technique of "support" is the concrete manifes-
tation of approval. A supported program is
one which IBM promises to fix when bugs turn
up. With an unsupported program, you're on
your own, God has forgotten you. Because so
much of IBM's virtue lies in the strength and
fervor of its support, the use of unsupported
programs, or unsupported features of supported
programs, is a difficult and risky matter, like
driving without a map nd a spare tire, or even
going into the Himalayas without gloves. Effec-
tively the withdrawal of support is the death
knell of any big program, such as TSS/360,
even though customers may want to go on using
them.

Availability of products is in general a
matter of exquisite degree. It's not so much
that you can or can't get a particular thing,
but that the pricing and available contracts at
a given time exert strong pressure to put you
where they have chosen within their currently
featured product line. Moreover, extremely
strong hints are always available; the salesman
will tell you what model of their computers is
likely to be a dead end, or, on the other hand,
what model is likely to offer various options
and progressive developments in the near future.

Some things are half-available, either as
"RPQs" (an IBM term for special orders--
Request Price Quotation), or available to
sophisticated customers at IBM's discretion.

With all the degrees of availability, it is
easy for IBM to open or close by degrees
various avenues in which customers are inter-
ested .

Also, different sizes of computer will or
won't allow given programs or desirable program
features. Many IBM customers have to get bigger
computers than they would otherwise want be-
cause a given program-- for instance, a COBOL
compiler with certain capabilities-- is not offered
by IBM for the smaller machine. Indeed, an
elaborate sizing scheme exists for matching the
machine to the customer-- or, a cynic might say,
assuring that you can't get the program features
you ought to be able to get unless you get a
larger computer than you wanted.

What it boils down to is that you, the
. have few options, especially

if your firm is already committed to doing cer-
tain things with a computer. And when IBM
brings out a new computer, the prices and
other infl are gly to
make mandatory the jump they have in mind to
the new model.

(This i of tr iti
does not always work. When the 370 was intro-
duced, for instance, IBM had in mind that com-
panies with a certain size of 360 would trade up
to a bigger 370. In some cases users traded
down to a smaller 370, which was able to do the
same work for less money, to the acute bother
of IBM.)

C. Having to do things just their way.

IBM systems and programs are set up to
do things in particular ways. To a remarkable
degree, it is difficult to use them in ways not
planned or approved by IBM, and difficult to
tie systems and programs together. Programs
and features which the casual observer would
suppose ought to be compatible, tend not to be.
For some reason compatibility always tends to
cost extra. It is as though the compatibility of
equipment and programs were planned by IBM
as much as their product line.

Effectively the IBM customer tends to be
frequently trapped in a cage of restrictions,
whether this cage is intentionally created by
IBM or not. One is reminded of the motto of
T.H. White's anthill in The Once and Future King:

THAT WHICH IS NOT FORBIDDEN IS COMPULSORY.

The degree to which these restrictions are
manipulated or intentional is, of course, a matter
of debate.

D. Captive bureaucracies running in place?

Perhaps the most unfortunate thing about
IBM (from an outsider's point of view) is that
effectively their systems can only be used by
bureaucracies whom they have tramed From
keypunch op: up to i
all are effectively enslaved to curious complex—
ities that keep changing. The ever-changing
structure of OS, and its quaint access methods,
is just one example. It might even seem to the
outside observer that IBM's game, intentional
or not, is to keep things difficult and intricately
fluid to retain utter control. In other words,
it is as though they fostered a continual turnover
of unnecessary complications to keep a captive
bureaucracy running in place. People who they
have indoctrinated tend not to buy opponents'
computers. People who are immersed in the
peculiarities of IBM systems, and busy keeping
up with mandatory changes, do not get uppity.
They are too busy, and the investment of their
time and effort is too high for them to want to
change.

Anti-IBM cynics say that a lot of the
work involved in working with IBM computers
is self-generated, arising from the unnecessary
complexities of 0S/360, JCL, TCAM and so on.
But of course that cannot be evaluated here.

PROSPECTS

These remarks should clarify the bleakness
of the prospect for man's future among computers
if IBM's system of control really does work this
way, and if it is going to go on doing so. Be-
cause it means the future that some of us hope
for-- the simple and casual availability to indi-
viduals of clear and simple computer systems
with extraneous complications edited away-- may
be foreclosed if they can help it.

Let's all hope, then, that these things
turn out not to be really true.

4

. IBM in its infinite wisdom
has decreed that this is the way
we must go."

Cynical computer
installation manager,

quoted in Computerworld,
22 Aug 73, p. 4.

—t

54

An interesting example of an IBM non-
breakthrough was the dramatic announcement in
1864 of the 360 computer, portrayed as a machine
which would at last combine the functions of
both "business" computers and "scientific" com-
puters. But other companies, such as Burroughs
(with the 5500) had been doing this for some
time. The quaint separation of powers between
scientific computers (with all-binary storage of

bers) and p 8 imal
storage) was based only on tradition and mar-
keting' considerations, and was otherwise unde-
sirable. In amalgamating the "two types," IBM
was only rescinding their own previous un-
necessary distinction. The drama of the an-
nouncement derived in large measure from the
stress they had previously laid on the division.
(Fortune ran an interesting piece on the decision
struggles preceding the introduction of the 360
computer, and the internal arguments as to whe-
ther there should be one line of computers or two.
See the five-billion-dollar- gamble piece, Biblio-
graphy.)

This ties in closely with another interes-
ting aspect of the IBM image, the public notion
that IBM is a great innovator, bringing out
novel technologies all the time. It is well known
in the field that they are not: IBM usually does not
bring out a new type of product until some.other
company has pioneered it. (Again remember
the earlier point, that the product offering is a
strategic maneuver.) But of course such facts
do not appear in the promotional literature, nor
are they d by the sal

The expression for this in the field is
that IBM "makes things respectable." That is,
customers get that reassured feeling, when IBM
adds other people's innovations to their product
line, and decide it's okay to go ahead and rent
or buy such a product. (This also sometimes
kicks business back to the original manufacturer.)

A few examples of things that were already
on the market when IBM brought them out, often
making them sound) ly new: 1
computers (first offered by Philco), virtual mem-
ory (Burroughs), microprogramming (introduced
commercially by Bunker-Ramo) .

ized

This is not to say that IBM is incapable of
innovation: merely that they are never in a
hurry about it. The introduction of IBM pro-
ducts is orchestrated like a military campaign,
and what IBM brings out is always a carefully-
planned, profit-oriented step intended not to
dislocate its product line. This is not to say
that they don't have new stuff in the back room,
a potential arsenal of surprises of many types.
But it is probable that most of them will never
be seen. This is because of IBM's "impact"
problem.

Unique in IBM's position is the problem of
fitting new products into the market alongside
its old ones. Its problem is much worse, say,
than that of Procter § Gamble. The problem is
not merely its size and the diversity of its
products, but the fact that they may interfere
with each other ("impact" each other, they say)
in very complicated ways. A program like
their Datatext, for example, which allows cer-
tain kinds of text input and revision from ter-
minals, may affect its typewriter line. These
are no small matters: the danger is that some
new combination of products will save the cus-
tomers money IBM would otherwise be getting.
Innovations must expand the amount IBM is
taking in, or IBM loses by making them.

These complications of the product line
in a way provide a counterbalance to IBM's fear-
some power. The corporation has an immense
inertia based on its existing product line and
customer base, and on ways of thinking which
have been carefully p and ined
throughout its huge ranks, that cannot be
revised quickly or flippantly.

Nevertheless it is remarkable how at
every turn-- notably when people think IBM
will be set back-- they manage to make policy
decisions or strategic moves which further con-
solidate their position. Often these seem to
involve restricting the way their computers will
be used (see box, "IBM's Control.")

(The most ironic such countermove by IBM
occurred a few years ago with the so-called
"unbundling" decision. IBM at last agreed (on
complaint from other software firms) to stop
giving its programs away to people renting the
hardware. Glee was widespread in the industry,
which expected IBM to lower computer prices
in proportion to what it would now charge for
the software. Not at all. IBM lowered its com-
puter prices by a minuscule amount and slapped
heavy new prices on the software-- often
charges of thousands of dollars per month.)

A persistent rumor is that IBM fires

all its salesmen in a geographic

area if a key or prestige sale is

"lost," as when M.I.T.'s Project

MAC switched over to General Electric
computers in the sixties, or when
Western Electric Engineering Research
Center passed over IBM computers

to get a big PDP-10.

Much as some people would like

to believe these stories, there seems
to be no documentation. You would
think one such victim would write
an article about it if it were true. —‘

Finally, there is the popular doctrine of
IBM's infallibility. This, too, is a ways from
the truth. The most conspicuous example was
something called TSS/360.

TSS/360 was a time-sharing system--
that is, the control program to govern one
model of the 360 as a time-sharing computer.
According to Datamation ("IBM Phases Out Work
on Showcase TSS Effort," Sept. 1, 1971, 58-9),
over 400 people worked on it at once for a total
of some 2000 man-years of effort. And it was
scrapped, a writeoff of some 100 million dollars
in lost development costs. The system never
worked well enough. Reputedly users had to
wait much too long for the computer's responses,
and the system could not really compete with
those offered elsewhere.

The failure and abandonment of this pro-
gram is thus responsi for IBM's p non-
competitive position in time-sharing: customers
are now assured by IBM that other things are
more important. IBM-haters thank their stars
that this happened: Cynics think it conceivable
that high-power time-sharing was dropped by
IBM in order to shoo its customer base toward
areas it controlled more completely.

Two other conspicuous IBM catastrophes

have been specific computers: the 360 model 90
in the late sixties, and a machine called the
STRETCH somewhat earlier. Both of these
machines worked and were delivered to cus-
tomers. (Indeed, the STRETCH is said by some
to have been one of the best machines ever.)
But they were discontinued by IBM as not suf-
ficiently profitable. Therein is said to have
been the "failure." (However, it has been al-
leged in court cases that these were "knockout"

i desi d to clobber the iti
at a planned loss.)

B. Negative views of IBM systems.

In the technical realm, IBM is widely un-
loved because many people think some or all of
their computers and programs are either poor,
or far from what they should be. The reasons
vary.

Some of the people feeling this way are
IBM customers, and for a time they had an or-
ganized lobby, called SHARE (which also facil-
itated sharing of programs). Recently, however,
SHARE has become IBM-dominated, a sort of
company union, according to my sources.

The design of the 360, while widely ac-
cepted as a fact of life, is sharply criticized
byLin‘any. (See "What's wrong with the 3607",
p- 1)

IBM's programs, while they are available
for a broad variety of purposes, are often notor-
iously cumbersome, awkward and inefficient,
and sometimes dovetail very badly. However,
the less efficient a program is, the more money
they make from it. A program that has to be
run for an hour generates twice as much revenue
than if it did its work in thirty minutes; a pro-
gram that has to be run on a computer with, say,
a million spaces of core memory generates ten
times the revenue it would in two hundred thou-
sand.

IBM programs are often thought to be
rigid and restrictive.

The complex training and restrictions
that go with IBM programs seem to have
interesting functions. (See box, "IBM's Control.")

C. Theories of IBM design.

The question is, how could a company
like IBM create anything like the 360 (with its
severe deficiencies) and its operating system or
control program OS (with its sprawling compli-
cations, not present in competitors' systems)?
Three answers are widely proposed: On Purpose
(the conspiracy theory), By Accident (the
blunder theory), and That's How They're Set
Up (the Management Science theory). These
views are by no means mutually exclusive.

The Management Science theory of IBM
design is the only one of these we need take up.

The extensive use of group discussion and
committee decisions may tend to create awkward
design compromises with a certain intrinsic
aimlessness, rather than incisively distinct and
simple structures. (See Gould's marvelous
chapter, "The Meeting," 58-80.)

Their use of immense teams to do big
programming jobs, rather than highly motivated
and especially talented groups, is widely viewed
as P ve. For i , Barnet A.
Wolff, in a letter to Datamation (Sept. 1, 1971,
p. 13) says a particular program

"remains ineffficient, probably because of
IBM's unfortunate habit of using trainees
fresh out of school to write their

systems code."

There may also be something in the way that
projects are initiated and laid out from the top
down, rather than acquiring direction from
knowledgeable people at the technical level,
that creates a tendency toward perfunctoriness
and clunky structure.

Thus there may very well be no intentional
policy of unnecessary complication (see Box,
"IBM's Control"). But the way in which goals
are set and ical decisi delegated may
generate this unnecessary complication.

THE ATOLY INSIDE SYoRY

It is unfortunate that Rodgers'
remarkable book does not follow the
details of IBM's computer designs and
politics in the computer age. i.e.,
since 1955. Later work, perhaps
helped by some Pentagon Papers. will
have to relate the decision processes
that occurred in this unique national
institution to the systems it has
produced and the stamp it has put
on the world.

QVICKE HISTORY
oF 1BM

IBM appeared in 1911 as the con-

solidation of a number of small companies

making light equipment, under the name
C-T-R Company (Computer-T i
Record). This was prophetic, consid-
ering how aptly it described the com-
pany's future business, and especially
prophetic considering that today's

stored-program computer was undreamed

of at that time.

According to William Rodgers'
definitive company biography Think,
the company's creator was a shrewd
operator named Charles R. Flint,
dashing entrepreneur and former gun
runner to the South American republics,
who in his shrewdness brought in to
run the company an incredibly talented,
fire-! ing and self-rig indi-
vidual named Thomas J. Watson, even
though Watson at that time was under
prison sentence for his sales practices
at another well-known company. The
sentence was never served, and Watson
went on to preside for many years
over a corporation to which he gave
his unique stamp.

Watson arises from the pages of
Think as a sanctimonious tyrant,
hard as nails yet reverently principled
in his words; the pillar of fervid,
aggressive corporate piety.

IBM was totally Watson's
creation. The company became what
he admired in others, a mechanism
totally obedient to his will and imple-
menting his forceful and inspiringly
rationalized convictions with alacrity.
As the Church is said to be the bride
of Christ, IBM might be characterized
as the Bride of Watson, molded to the
styles of demandingness, pressure,
efficiency and pietism which so char-
acterized that man. But the ideas
flowed from Watson alone, except for
a few confidantes who received his
nod. The company is vastly bigger
now, and slightly more colorful, in a
muted sort of way; but it is still the
stiff and deadly earnest battalion of
his dream.

Because of Watson's background
as salesman, he made Sales the apex
of the corporation. The salesmen had
the most prestige within the company
and could make the most money; below
that was administration, below that,
technical staff.

Watson eliminated the meat-slicing
machines, and pushed the product line
based on punched cards developed by
IBM's first chief engineer, Herman
Hollerith. According to Rodgers, it
was impetus from the Depression, and
the new bookkeeping requirements of

It's r dies, that skyrock d
the firm uniquely during the depths of
general economic catastrophe, till
Watson came to draw the highest salary
of any man in the nation. In 1934 his
income was $364,432 (Will Rogers, not
the author of Think, was second with
$324,314) . Watson had neatly arranged
to get 5% of IBM's net profit.

While IBM participated in the
creation of certain early computers, it
is interesting that Watson dismissed
Eckert and Mauchly when they came
around after World War II tring to get
backing for their ENIAC design, in
certain ways the first true electronic
computer. Eckert and Mauchly went
to Remington Rand, and the resulting
Univac was the first commercial
computer.

However, IBM bounced back
very well. If there was one thing they
knew how to do it was sell, and when
they brought out their computers it
was practically clear sailing. (The
Univac 1 was the first of many compu-
ters to be delayed and boggled in the
completion of its software, and this
considerable setback helped IBM get
the lead very quickly; they have
never lost it since.)

In the early sixties the IBM 7090
and 7094 were virtually unchallenged
as the leading scientific p s of
the country. But IBM in the late six-
ties almost relinquished the fields of
very big computers and time-sharing
to other companies, and their compu-
ters are not regarded as innovative.
Nevertheless, IBM's Systems 360 and
370, despite various criticisms, have
been.very successful; thousands of
them are in operation around the globe,
far more than all their rivals' big
computers all put together. This des-
pite the fact that some of these systems
have failed, including the big Model 91
(an economic failure) and the TSS/360
time-sharing program, a technical
catastrophe.

They have from time to time
been accused of unfair tactics, and
various antitrust and other actions
(see "Legal Milestones" box) have
required IBM to change its arrange-
ments in various ways. One decree
required them to sell the computers
that before they had only rented;
another decision, to."unbundle," or
sell computers separately from their
programs (previously "given" away
with the computers they ran on), is
widely believed to have prevented
government action on the same
matter. Showing characteristic
finesse, IBM thereupon lowered the
computer prices almost imperceptibly,
then slapped heavy price-tags on °
the programs that had previously
been free.

Recent moves by the government
have suggested an especially serious
and far-reaching anti-trust suit against
IBM, possibly one that might break the
company up, with its separate divisions
going various ways. However, in
today's climate of cozy relations be-
tween business and government, it is
hard to imagine that such matters
would not be settled to IBM's liking.
This lends a curious tint to a remark
one IBM person has made to the author,
to wit, that maybe IBM wants to be
broken up. That might be one way of
reducing the unwieldiness and inter-
dependency of its product line; in
addition to reducing its vast, under-
utilized personnel base. (Another
angle: Acting Attorney General Bork
has expressed the view that IBM is
big only because its products and
management are wonderful, so the
antitrust case may simply evaporate
during the rump days of the Nixon
incumbency.)

An interesting aspect of IBM publicity is its stress on status.
Publicity photographs often show a subordinate seeking advice
from a superior. IBM ads appeal to the corporation president
in all of us-- either Going It Alone (taking a long walk over an

Decisi

) or

ting a lesser employee.

In one extraordinary case, we saw worshipful convicts at the
feet of a Teacher implausibly situated in the corner of a prison

yard.

e %O 2w g‘l’;sd&c\ug&"‘.a\

IBM announced a number of worthy objectives when the 360
line was announced in 1964. IBM should certainly be thanked for
at least their lip service to these noble goals.

1. 'One machine for all purposes, business and scientific.'
(Thus the name'"360," for the "full circle" of applications.)
By "business" this mainly meant decimal, at four bits a digit.
Actually this meant grafting 4-bIt decimal hardware to an other-

3. '360s will all look alike to the progran; thus programs
can be moved freely from machine to machine.'

Unfortunately this compatibility has been undermined by
numerous factors, especially the variety of operating systems,
including half a dozen major types, and the language processors,
intricately graded according to computer size. Both these fac-
tors tend to make changes necessary to move programs between com-

wise normal binary computer, and making both types of users share

the same facility.

2. 'Information storage and transmission will be stan-
dardized.' The 360 was set up to handle information 4 bits at
a time, 8 bits at a time, 16, 32, and 64 bits at a time. (The

puters. While one effect of this "standardization" has indeed

been to facilitate the moving of programs from small computers

preceding standard had been 6, 18 and 36 bits at a time.)

In their 360 line, IBM also replaced the industry's stan-
dard ASCII code with a strange alphabetical code called EBCDIC
("Extended Binary Coded Decimal Information Code"), ostensibly
built up from the 4-bit decimal code (BCD), but believed by-*

hard to move from a
usefulness of this

to big ones, a more jmportant effect has perhaps been to make it
big computer to a smaller one. Note the
apparent paradox to IBM's marketing.

The secret of it all, of course, lies in IBM's keen under-
standing of how to sell big computers. The comptroller, or
somebody like him, generally makes the final decision; and if
he is told that the one computer will run "all kinds" of pro-
grams, that naturally sounds like a saving. Shades of the F-

cynics to have been created chiefly to make the 360 incompatible 111. (Businessmen's trust and respect for IBM is discussed

with other systems and terminals.

elsewhere in this article.)

THE Bl QUESTIONS

Between the trade press and dozens of acquaintances
in the field, almost everything I hear about IBM and its
products is negative (say five or ten to one) -~ except from
people who work or have relatives there.

Perhaps it's just sour grapes. Or the authority-
hating character of research types. Or selective reading.

Or perhaps there really is something sinister.
The major questions are these.
1. How clean is their salesmanship?

2. Are their systems unnecessarily difficult or
cumbersome on purpose?

3. How deep is their system of entrapment and
forced 1 of the t ? How
y are the de: dardizations and
the constant changes?

4. Do they have a final liberating vision? Do they
really, after all, intend to bring about a day
when life is easier for people? When the
difficulties of present-day computer systems,
especially theirs, wither away? I think that
history's judgment on IBM in our time
may narrow down to that simple question.

(In this light it is not hard to understand
IBM's stand on software copyrights vs. patents.
IBM is against programs being patentable, which
would cover abstracted properties, but argues
in favor of copyright, whose protection is
probably more limited to the particulars of a
given program. If they have their way, it would
be assured that IBM could use any ingenious
new programming tricks without compensation,
whereas all y compli of bulky,
cumbersome software would be covered in
entirety by copyright.)

Finally, it has not been demonstrated that
IBM has any general ability to make systems
conceptually simple and easy to use. (Two
good examples of hard systems are the Mag
Tape Selectric and Datatext-- easy for program-
mers, but hardly for secretaries.) There seems
to be no emphasis on elegance or conceptual
simplicity at IBM. Those who adopt such a
philosophy (such as Kenneth Iverson) do so
on their own.

As mentioned earlier, this has something
to do with the fact that individuals generally
use IBM's systems because they have to, being
employees or clients of the firms that rent IBM
equipment, so there is no impetus to design
programs or systems to run on simple or clear-
minded principles, or dress out intricate systems
so they can be used easily.

4. THE IMAGE.

It is hard to analyze images, corporate or
personal. They are often received in such differ-
ent ways by different populations. But there may be
a commonality to the IBM image as generally seen.
The Image of IBM involves some kind of cold magic,
a brooding sense of sterile efficiency. But other
things are percolating in there. If we slide that
connotation of efficiency aside, the IBM image
seems to have two other principal components:
authoritarianism and complacency. It is this mix-
ture that longhairs will naturally find revolting .
This same combination, however, may be exactly
what it is that appeals to busi
types.

—

! IF YOU REALLY WANTIT. ..

you can get character-by-character
responding systems on IBM computers.
The new Stock Exchange system uses a
"Telecommunications Access Method"
permitting non-IBM terminals to respond
character-by-character, just as systems
for non-computer-people should.

Trying to use this input-output
program on your local IBM computer is
another problem, though. Aside from
program rental costs, there is the prob-
lem of its compatibility with the whole
line of IBM software. Adaptations and
reprogramming would probably be
necessary up and down the line.

THE FUTQRE
What will IBM do next?

Speculation is almost futile, but necessary
anyhow. The prospects are fascinating if not
terrifying .

No one can ever predict what IBM will do; but
trying to predict IBM's actions-- IBM-watching is
something like Kremlin-watching-- is everybody's
hobby in the field. And its consequences affect
everybody. With so many things possible, and
determined only in the vaguest way by technical
considerations, the question of what IBM chooses
to do next is pretty scary. Because whatever
they do we'll be stuck with. They can design our
lives for the foreseeable future.

We know that in the future IBM will announce
new machines and systems, price changes (both up
and down) in fascinating patterns, rearrangements
of what they will "support," and changes in the
contracts they offer (see box, "IBM's Control") .
Occasional high-publicity speeches by IBM high
officers will continue to be watched with great care.
But mainly we don't know.

IBM's slick manufacturing capabilities mean
that practically any machine they wanted to make,
and put on a single chip, they could, and in a
very short time. (The grapevine has it that the
Components Division, which makes the computer
parts, has bragged within the company that it
doesn't really need the other divisions any more
-- it could just put whole computers on teeny
chips if it wanted to.)

In this time of the 370, things are for the
moment stable. The 370 computer line is still their
main marketing thrust. Having sold a lot of 370
computers (basically sped-up 360s), their idea is
at the moment to sell conversion jobs to adapt the
370 to run the new "Virtual System" control pro-
gram (VS or OS/VS or various other names). This
system (which is, incidentally, widely respected)
makes core memory effectively much larger to
programs that run on it. This effectively encour-
ages programmers to use tons of core, by means
of virtual memory; essentially getting people in
the habit of programming as if core were infinite.
This extension of apparent memory size distracts
from any inefficiencies of both locally written pro-
grams and IBM programs, thus tending to increase
use and rental charges.

When that marketing impetus runs out we'll
see the next thing.

The other new IBM initiative is with smaller
machines, the System 3 and System 7, being pushed
for relatively small businesses. That is where they
see another new market. How easy and useful their
programs are in this area will be an important
question.

With the System 7, a 16-bit minicomputer
for $17,000, IBM has at last genuinely entered the
minicomputer market. (Balancing its speed and
cost against comparable machines, we can figure
the IBM markup as being about 50%, which is
typical.)

In addition, it is rumored that IBM might
put out a tiny business mini, to sell out of OPD.
(Datamation, Dec 72, 139.) But really, who knows.

In addition to this huge-memory strategy for
its big machines, and the starting foray into spe-
cialized mini systems, there is the office strategy
and "word processing ."

IBM has conceptually consolidated its
various magic-typewriter and text services under
the name of "word processing," which means any
handling of text that goes through their machines.
This superficially unites their OPD efforts (type-
writers and dictation machines) with things going
on in DPD, such as Datatext, and allays inter-
divisional rivalries for awhile. Also, by stress-
ing the unity of the subject matter, it leaves the
door open for later and more glamorous initiatives,

such as hypertext systems (see "Carmody's System,"

flip side) .

In other words, the foot is in the door. Mr.
Businessman has the idea that automatic typing
and things like that are 1BM's special province.

Few firms anywhere have the confidence
to advertise generically a product which
is made by others as well, as in IBM's
"Think of the computer as energy" series.

tages of big computers with lots of core mem

SHOULY INDIVIDUALS FEAR 1BM ?

Even if it is true, as Anonymous says (see Bibliography)
that IBM intimidates people and keeps its enemies
from getting jobs at IBM-oriented establishments,
that's not the end of the world.

Grosch, Gould, Rodgers and McGurk are alive and working.

Extramural harassment like that employed by GM against

Nader, for example, has not been reported.

END OF THE DINOSAURS?

To a very great extent, IBM's computer
market is based on big computers run in batch
mode, under a very obtrusive operating system.

Many people are beginning to notice, though,
that many things are more sensibly done on small
computers than on big ones, even in companies
that have big computers. That way they can be
done right away rather than having to wait in line.
Is this the mammal that will eat the dinosaur eggs?

On the other hand, a very unfortunate trend
is beginning to appear, an implicit feud within
large organizations, which may benefit IBM's big
computer approach. Those who advocate mini-
computers are being opposed by managers of the
big computing installations, who see the minis
as threatening their own power and budgets. This
may for a long time hold the minis back, perhaps
with the help and advice of computer salesmen who
feel likewise threatened. But there will be no
holding back the minis and their myriad offspring,
the microprocessors (see p. ‘1‘-\). And the inroads
should begin soon.

(Others are growing to know and love true
high-capacity time-sharing as a way of life, like
that offered for DEC, GE and Honeywell machines.
This, too, may begin to have derogatory effects on
IBM's markets.)

Finally, it must be noted that almost all big
panies have s, usually IBM computers,
and so an era of marketing may well have ended.
It may be possible for IBM to go on selling bigger
and bigger rs to the s who already
have them, but obviously this growth can no
longer be exponential.

& GRSy TeNY

Herb Grosch, now editorial director of Computerworld, is perhaps
IBM's worst enemy. Once he worked for old man Watson, and was the
only IBM employee allowed to have a beard. Now, among other things, he
gives speeches and testimony wherever possible about the M of IBM,
at conferences, at governmental hearings, and in letters to editors.

55

Yet IBM's main computer sales strategy today is to stress the advan-

ory (and persuade you you

don't want highly interactive sy or P P

And the fundamental rule stating the ad of big p

is called Grosch's Law, formulated years ago by none other. See p.

A LITTLE GEM FROM THE IBM SONGBOOK

(Who says IBM doesn't encourage individualism?
To the tune of "Pack Up Your Troubles
in Your Old Kit Bag.")

"TO THOMAS J. WATSON, President, IBM"

Pack up your troubles-- Mr. Watson's here!
And smile, smile, smile.

He is the genius in our IBM

He's the man worth while.

He's inspiring all the time,

And very versatile-- oh!

He is our strong and able President!

His smile's worth while.

"Great organizer and a friend so true,"
Say all we boys.

Ever he thinks of things to say and do

To increase our joys.

He is building every day

In his outstanding style-- so

Pack up your troubles, Mr. Watson's here
And Smile-- Smile-- Smile.

(As a nostalgic public service

A Comp Techni , Inc., of
Boston, gave away LPs of IBM songs at the
69 SJCC. They might just have some left...)

NEW CHIPS. ..

IBM can put pretty much anything on a single
chip, to make a functioning machine the size of a
postage stamp; but so can a lot of other companies.

The ion really b her what
goes on that chip is a worthwhile machine that does
what people want.

...BUT THE SAME OLD BLOCK?

It is by no means clear that IBM has any
general ability to make computer systems easy to
use.

This is a psychological problem.

As a corporation they are used to designing
systems that people have to use by fiat, and must
be trained to use, contributing to the captivity
and inertia of the customer base. Thus the notion
of making things deeply and conceptually straight-
forward, without special jargon or training, may
not be a concept the company is ready for.

SOME DIVISIONS OF IBM you may hear about

OPD Office Products Division. Typewriters, copiers.
DPD Data P i . Comp and
FSD Federal Systems Division. Big government contrac

NASA stuff, and who knows what.
ASDD Advanced Sy
Components Division.

ion. Very secret.

"THERE IS A WORLD ELSEWHERE."
~- Coriolanus

There is no way to escape IBM entirely. IBM
mediates our contacts with government and medi-
cine, with libraries, bookkeeping systems, and
bank balances. But these intrusions are still lim-
ited, and most of us don't have to live there.

There are many computer people who refuse
to have anything to do with IBM systems. Others,
not so emphatic, will tell you pointedly that they
prefer to stay as far away from IBM computers
as possible. If you ask why, they may tell you
they don't care to be bothered with restrictive,

y and y p i (the JCL

is usually ioned). This is one
reason that quite a few people stick with minicom-
puters, or with firms using large computers of
other brands.

It is possible to work productively in the
p field and pl avoid having to
work with IBM-style systems. Many people do.

IBM LEGL MLESTONES

The famous Consent Decree of January 1856. (In a consent decree,
an accused party admits no guilt but agrees to behave in
certain ways thereafter.) In response to a federal anti-trust
suit, 1BM agreed to:

sell as well as lease its computers, and repair those
owned by others;

permit attachments to its leased computers;

not require certain package deals;

license various patents;

not buy up used machines;

and get out of the business of supplying computer
services, i.e., programming and hourly rentals.

Unbundling decision, late sixties. While this was not a government
action but a an internal policy decision by the company, it some-
how had a public-relations appearance of official compulsion.
Beset by pressures from makers of look-alike machines, users of
competitive equipment, and the threat of anti-trust action, IBM
decided to change its policy and sell programs without computers
and computers without programs. Delight amongst the industry
turned to chagrin as this became recognized as a price hike.

The Telex Decision, September '73: Telex Corp. of Tulsa was awarded
$352,500,000 in triple damages (since reduced) for losses attributed
to IBM's "predatory" pricing and other marketing practices.

Much more important, IBM was required to disclose the
detailed electronics required to hook things to their computers and
accessories within sixty days of announcing any. This was a great
relief for the whole industry. Essentially it meant IBM could no
longer dictate what you attach to their machines. Unfortunately.
it is not clear whether this will stand.

But what we're waiting to hear about is whether the Nixon Justice
Department is, or is not, going to press the big anti-trust suit
which has been long brewing, at the persistent request of other
firms in the industry.

"THINK OF THE COMPUTER AS ENERGY,"
says a recent series of IBM ads.
But in terms of monopoly, price, and
the world's convenience, there would
seem only one way to complete the
analogy, viz.:

"THINK OF THE COMPUTER AS ENERGY.

"Think of IBM as King Faisal."

Fouye OF THE
1BM UM BRELLA

For a long time, during the
sixties, IBM's high prices provided
an environment that made it easy for
other companies to come into the field
and sell computers and peripherals.
These high prices were referred to as
"the IBM umbrella."

However, this era has ended.
IBM now cuts prices in whatever areas
it's thr d. A brief f] i g of
companies making add-on disk and
core memories for IBM computers has
become precarious; not only will IBM
now cut prices, but they have shown

SRA

and learning kits.
Watson Lab

T.J. Watson Research Laboratory, Westchester County,

north of New York City. TI and

Makes parts for the other guys, i ing integrated .
S R A Chicago. Publishes textbooks

themselves still disposed to invent new
restrictive arrangements (the recent
"virtual memory" announcement for
the 370 claimed that the program

will only work on IBM disk and core) .

BIBLIOGRAPHY

Harvey D. Shapiro, "I.B.M. and all the dwarfs,"
New York Times Magazine, July 29, 1973,
10-36.

An objective, factual article, sympa-
thetic to IBM-- although it drew at least
one irate letter from an ibmer who didn't
think it sympathetic enough.

"IBM: Time to THINK Small?" Newsweek, Octo-
ber 1, 1973, 80-84.

Frank T. Cary, letter to the editor, Newsweek,
Oct. 15 73, p. 4. A snappish reply to
the above by the IBM Board Chairman,
who evidently didn't like the article very
much.

Robert Samuelson, "IBM's Methods," New York
Times Sunday financial section, June 3,
1973, p. 1.

=+ This article gives a unique
glimpse of some of the interesting things
that came to light in the Control Data suit
against IBM-- citing trial documents never
publicly released.

* William Rodgers, Think. Stein and Day, 1969.
Subtitled A Biography of the Watsons
and IBM.

= Concentrates on the days before
computers. Fascinating profile of Watson,
a business tiger; but the view of the cor-
poration in an evolving nation is general
Americana that transcends fiction.

Would you believe Rodgers says
Watson was the kingmaker wo put General
Ike in the White House?

Unfortunately, the book has relatively
less on the computer era, so the inside
story of many of their momentous decis-
ions since then remains to be told.

Heywood Gould, Corporation Freak. Tower (paper-
back.)

Marvelous; hard to get; Gould thinks
IBM quietly bought up all the copies.

The musings of a sophisticated, clever
and observant cynic who began knowing
nothing about IBM, Gould's wide-eyed obser-
vation of its corporate style and atmosphere
is a jolt to those of us who've gotten used
to it. And he thought it was just another big
company!

Anonymous, "Anti-Trust: A New Perspective."
Datamation, Oct 73, 183-186.

Richard A. McLaughlin, "Monopoly Is Not a Game, "
Datamation, Sept. 1973, 73-77.

Qi ire survey i to
test truth of common accusations against IBM.
(Discussed in text above.)

W.David Gardner, "The Government's Four Years
and Four Months in Pursuit of IBM." Data-
mation, June 1973, 114-115.

Almost any issue of Computerworld or Datamation,
the two main industry news publications,
carries articles mentioning complaints about
IBM from various quarters on various issues.
Datamation's letters are also sometimes juicy
on the topic.

Any issue of On Line, a news sheet of the Computer
Industry Association, ten bucks a year.
(CIA-- no relation to the intelligence agency
-- 16255 Ventura Blvd., Encino, CA 91316.)

T.A. Wise, "I.B.M.'s $5,000,000,000 Gamble,"
Fortune, Oct 1966.

Daniel J. Slotnick, "Unconventional Systems."
Proc. SJCC 1967, 477-481.
Interesting, among other reasons,
for the heaviness of the sarcasm directed
at IBM and its larger computers.

% William Rodgers, "IBM on Trial." Harper's,

May 1974, 79-84.

Continues where Think left off;
examines some of the Jirt that came out
in the Telex case, and other things.

The author regrets not being able to list more
articles and books favorable to IBM, but these do not
seem to turn up so much. However, here are a few.

A Computer Perspective, by the office of Charles
and Ray Eames, Harvard U. Press, $13.

Angeline Pantages, "IBM Abroad." Datamation,
December 1972, 54-57.

For an example of the kind of adulation of IBM
based on faith, see Henry C. Wallich,
"Trust-Busting the U.S.A.," Newsweek
10ct 73, p. 90.

The IBM Songbook, any year-- they haven't been
issued since the fifties-- is definitely a
collectible.

Digital Equipment Corporation, in response
to the "Energy Crisis" of 1973, didn't turn out 57
their Chri tree. I d they hooked it up
to a water wheel they happened to have. Typical.

e C'h TtVEM'
on'oTev hPH\

DEC

The PDRecple.

This policy has made for slow but steady
growth. In effect, Digital built a national cus-
tomer base among the most sophisticated clients.
The kids who as undergraduates and hangers-on
built interfaces and kludgey arrangements, now
as project heads build big fancy systems around
DEC equipment. The places that know computers
usually have a variety of DEC equipment. around,

lly drastically modifi

Because of the great success of its small
computers, especially the PDP-8, even many com-
puter people think they only make small compu-

PDP-1
(18 bits)

1965

KNow Your
S

(MIT's LINC.
12 bits.)

PDP-4
(18 bits)
PDP-5
(12 bits)
PDP-6
(36 bits)
]

The computer companies are often referred ters. In fact their big computer, the PDP-10, is PDP-7
to in the field as "Snow White and the Seven one of the most ful time-sh 1 PDP-8
Dwarfs"-- a phrase that stays the same even as An example of its general esteem in the field: it
the lesser ones (like RCA and General Electric) is the host computer of ARPANET, the national PDP-9
get out of the business one by one. The phrase computer network among scientific installations PDP-10
suggests that they're all alike. To an extent; funded by the Department of Defense; basically LINC-8
but there is one company sufficiently different, this means ARPANET is a network of PDP-10s. (two prog.
and important enough both in its hmtory and its PDP-14 PDP-8i followers,
, to req position here. DEC's computers have always been designed (industrial l Funs progs.
This is Digital Equipment Corporation, usually by programmers, for programmers. This made control for either.)
- pronounced "Deck," the people who first brought for considerable suspense when the PDP-11 did boxes) PDP-8s
out the minicomputer and continue to make fine not appear, even though the higher numbers did, /
stuff for people who know what they are doing. and the grapevine had it that the 11 would be PDP-12
a sixteen-bit machine. It proved to be well PDP-16 PDP-15
Other p ies have icked waiting for (see p 22), and has since become (COMPILE PDP-8e
IBM. They have built big computers and tried the dard sop icated 16-bit hine in the YOUR
to sell them to big corporations for their business industry. OWN) NI
data proeessing, or big "scientific" machines and .
tried to sell them to scientists. An area DEC has emphasized from the first (There were no PDP-2, 3 or 13.) - PDP 11 <

DEC went about it differently, always de-
signing for the people who knew what they were
doing, and always going to great lengths to tell
you exactly what their equipment did.

First they made circuits for people who
wanted to tie digital equipment together. Then,
since they had the circuits anyway, they manu-
factured a computer (the PDP-1). Then more
computers, increasing the line slowly, but always
telling potential users as much as they could
possibly want to know.

The same for its manuals. People who
wrote for information from Digital would often
get, not a summary sheet referring you to a local
sales office, but a complete manual (say, for
the PDP-8), includ p on prog N
how to build interfaces to it, and the exact
timing and distribution of the main internal pulses.
The eﬂect of thls was that sopmshcnted users--

i in ities and estab-
hshments-- started building their own. Their
own interfaces, their own modifications to DEC
computers, their own original systems around

has been p (di d at length
on the flip side). Thus 1(is no surprise that
their interactive animated computer display, the
GT40 (see p. () is an outstanding design and
success. (And the University of Utah, currently
the mother church of computer display, runs its
graphic systems from PDP-10s.)

In this plucky, homespun company, where
even president Olsen is known by his first name
(Ken), it is understandable that marketing pizazz
takes a back seat. This apparently was the view
of a group of rebels, led by vice president Ed
deCastro, who broke off in the late sixties to
start a new computer company around a 16-bit
computer design called the Nova-- rumored to
have been a rejected design for the PDP-11. The
company they started, Data General, has not been
afraid to use the hard sell, and between their
hard sell and sound machine line they've seriously
challenged the parent company.

But Digital marches on, the Coriputer Fan's
computer company. If IBM is computerdcm's
Kodak, whose overpriced but quite reliable goods
have various drawbacks, DEC is Nikon, with a

(16

u-“

l\“&T'S N ?DP’ (Models: ;zo),m.q_sA . .)‘
DEC's Wade name bora e»o'\?kr

4 ——

I'm not getting any favors from DEC,
just saying about them what people ought to
Kknow .

However, I do have grateful recollections
of the warmth and courtesy with which people
from Digital Equipment Corporation have taken
pams to explain things to me, hour after hour,

after fe .

In the early sixties they had one man in
one small office to service and sell all of New
Jersey and New York City. But that one guy,
Dave Denniston, spent considerable time respon-
ding to my questions and requests over a period
of a couple of years, and in the nicest possible
way, even though there was no way I could buy

DEC computers. mix-and-match assortment of what the hotshots anything. You don't forget treatment like that.

want. That's pluralism for you.

PERIPHERALS for Your MiN|

Some’ kinds of peripheral devices, or com-
puter accessories, are always necessary. Only
through perigherals can you look at or hear
results of what the computer does, store quan-
tities of inforhmation, print stuff out and
whatnot.

"... a sophisticated electronic computer
can store and recall some 100 billion
'bits' of information..."

TIME, 14 Jan 74, 50.

MAGNETIC. RECORDING MEDIA

Any nuaber of different magnetic devices
are used for mass storage of symbolic (digital)
information; each has its own medium, or form
of storage.

pPiffle. That's the overall size of the
memory, which is utterly independent
of the sophistication or general power

of the computer itself. The ones which are removable (called "re-

Trying to print lists of available stuff movable media“) are of all sorts.
here is hopeless. There are thousands of
peripherals from hundreds of manufacturers.

If you buy a mini, figure that your peripherals
will cost 31500 (Teletype) on up. But mainten- -
ance (see p.5C) is the biggeSt problem. If Scared?
you buy peripherals from the manufacturer of It's just a

trillion-bit memories are available, and you
could put one on a machine as small as
a PDP-8.

EFFECTIVELY STANDARDIZED BY IBM

3/4-inch magnetic tape.
Pre-1965: 6 tracks data, 1 track parity.
Post-1965: 8 lracks data, 1 track parity.

the computer, at least you can be sure someone DECtape drive, 2741 disk

will be willing to maintain the whole thing. upside down. Stack of removable platters size of a
(Independent peripheral manufacturers will layer cake.

often repair their own equipment, but nobody 3330 disk

wants to be responsible for the interface.) Same but bigger cake.
disk cartridge
Plastic case, size of coolie hat, en-
closing disk.
floppy disk
Flexible, card-thin disk enclosed in
A small line printer. square 8" envelope.
Prints some 300 lines data cell (not very common)
a minute (faster if Plastic strips pulled out of wedge-
the lines are narrov). shaped tubes arranged in a rotating
Price around §15,000. cylinder. Strip is pulled out of this

carousel, whipped around a drum to make
(QQI'I!
‘ﬁl (1 uc

temporary drum memory, returned to case.
peripherals foo,)

. If you want a list see "Table of Mini-
peripheral Suppliers,'" Computer Decisions,
Dec 72, 33-5; more thorougﬁ poop 1s offered
by Datapro Research Corp., 1 Corporate Center,
Route 38, Moorestown NJ 08057.

Digk cartridges for
this model disk drive.

The brown-coated disk
itself is hidden in the
plastic case. Never-
theless, they sometimes
get scratched or break.

As to the serious matter of disks, an ex-
cellent review article is "Disc Storage for
Minicomputer Applications,'" Computer Design
June 1973, 55-66. This r;vxews both principles
of d1fferent types of disk drives, and what
various manufacturers offer.

Disk drive for the ll.
Most such devices go
at 30 spins a second,
or 1800 rpm. The heada
that read and write

EFFECTIVELY STANDARDIZED BY OTHERS
A disk costs $75 and

¢ a holds up to 2,400,000 LINCtape
Also helpful on disks and tapes: "Making information are on characters of infor- 3/4-inch tape on a 4-inch reel (fits in
a Go of Ministorage," by Linda Dermer. Com- moving arme that have mation (1.2 million carks g0 | Lere, pocket) , specially coated against fric-
puter Decisions, Feb 74, 32-38. Best recent to be positioned on PDP-11 words, which tion, developed at Lincoln Labs for LINC

survey. the different tracks.
(Some disks have a head
for every track, which
costg more.)

are 16 bits each).

TYPICAL
TE RIPHCRALS

("' ‘:‘T‘#\ o p. 36)

computer (see p. 41).
DECtape
Same size and reel but differently for-
matted for DEC machines (varies with
model). Very reliable. A personal fav-
orite of many programmers.
3M CARTRIDGE
The Scotch-tape people say the cassette
is unreliable, and offer as an alterna-
pulses to the computer tive a belt-driven quarter-inch baby,
based on the holes costing maybe $1000 without interface.
punched in the cards. CRAM (Card Random Access Memory)-- rare
Big pieces of plastic (about four inches
by two feet) pulled by notches out of a
cartridge and whipped around a drum.
National Cash Register.

If you have disk drives
(85500 each) you need a
controller ($5500). Sigh.

A card reader. Junds

YouR TORTLE ANY MUSIE Box

Surely nobody can resist the peripherals offered
by General Turtle, Inc., 545 Technology Square, Cam-
bridge, Massachusetts 02139.

BRAILLE HARDLY STANDARDIZED AT ALL

"Cassettes"-~- Philips-type audio-type cassette.
Used by various manufacturers in
various ways. Sykes, Sycor, DEC, Data
General and others have separate, and us-
ually incompatible, systems.

No joke here. People are still making
Braille copies of things by hand. But the way
to do it is by computer: the machine can punch
out new copies of whatever's stored in it,
repeatedly.

The Turtle is a sort of casserole on wheels that
takes a pencil down the middle. Attached to your
» it can be p to ramble around draw-
ing pictures, or just do wheelies on the parquetry.
$800.

A Braille-punching adapter kit is avail-
able for the plain 33 Teletype, I believe

Then the Music Box is $600. It sings in four
from Honeywell.

voices, enough for a lot of Vivaldi, does five octaves
and looks to the computer like a Teletype. They will

play you samples on the phone (617/661-3773). A similar adapter kit for IBM's System 3

is available from IBM. You never know what you'll see next. In 1969
For either of these you need a Controller ($1300). one firm d a "high-density d-only
(It is of interest that an early use of memory device" which anyone could see was a
Mooers' TRAC Language was with Braille conver- plain 45 RPM phonograph-- but with digital el-
sion.) ectronics. And it made sense. But it doesn't
seem to have caught on.

58

SWATION

is an imposing term which means almost anything.
Basically, "simulation" means any activity that

p or g. Comp
simulation is using the computer to mimic some-
thing real, or something that might be, for any

P ' to undi an ing p better,
or to see how something might come out in the
future.

Here again, though, the Science myth steps
in to mystify this process, as though the mere
use of the computer conferred validity or some
kind of truth.

(On TV shows the Space Voyagers stand
in front of the "computer" and ask in firm, unnat-
urally loud voices what will be the results of so-
and-s0. The computer's oracular reply is infal-
lible. On TV.)

Let there be no mystery sbout this. Any
use of a data structure on a what-if basis is
You can in detail or crudely;
your simulation can embody any theories, sensible
or stupid; and your results may or may not cor-
respond to reality.

A" is the of
a that ' ly, is willing
to stand behind. (See "computer election predic-
tions," p. 65 .)

These points have to be stressed because
if there is one computer activity which is preten-
tiously and , it is si
Especially to naive clients. There is nothing
wrong with simulation but there is nothing super-
natural about it either.

Another term which means more or less
the same is modelling.

In the loose sense, simulation or model-
ling consists of calculations about any des-

h for i » optical
equations. In optical modelling (and this is how
they design today's great lenses), a data struc-
ture is created which represents the curvature,
mounting, etc. of the separate glasses in a lens.
Then "simulating" the paths of individual rays
of light through that lens, the computer program
tests that lens design for how well the rays
come together, and so on. Then the design is
changed and tried again.

type of » an imp
and quite distinct one-- is that which represents
the complex interplay of myriad units, finding
out the upshots and consequences of intricate
premises. In traffic simulations, for instance,
it is easy enough to represent thousands of cars
in a data structure, and have them "react”
like dri ting very vil g traffic
jams, again represented somehow within the
data structure.

req two things:

a representation, or data structure, that somehow
represents the things you're simulating in the
aspects that concern you; and then a program
does something to these data, that is in some

way like the process you're concerned about
acting on the things you're modelling. And each
event of significance enacted by the program

must somehow leave its trace in the data structure.

The line between simulation and other pro-
gramming is not always clear. Thus the calcu-
lation of the future orbits of the planets could

called "simulations." *

The most intricate cases, though, don't
particularly resemble any other kinds of programs.
The intri of

phy ,
especially swarms and myriads with mixed and

g are y 8-
(In a recent Scientific American article, simula-
tion helped to ibl
of stars laxies as g from nor-
mal considerations of inertia and gravitation.
(Alar and Juri Toomre, "Violent Tides between
Galaxies,” Sci. Am. Dec 73, 38-48.))

Models of complex and changing rates are
another i g type. Enacti
things, whose are y changing
in terms of percentage multipliers of each other,
sound easy in principle, but their
can be quite surprising. (See "The Club of
Rome," p. 6§ .)

To imagine the kinds of mixed-case myriad
models now possible, we could on today's big
computers model entire societies, with a separate
record describing each idividual out of millions,
and specifying his probabilities of action and

iffe pref g to various th

-- then follow through whole societies' behavior
in terms of ed: , income, riage, sex,
poverty, death, and anything else. Talk about
tin soldiers and boats in the bathtub.

Any computer language can be used for
some kind of simulation. For simulations invol-
ving relatively few entities, but lots of rates
or formulas, good old BASIC or FORTRAN is
fine. (MAGI's "Synthevision" system, which
could be said to "simulate" complex figures in
a three-dimensional space, is done in Fortran;
see p.)NX.) For simulations involving a lot
of separate objects, special cases and discrete
events, TRAC Language (see p. |§) is great.
14 tical f are i d,
and you want to change them around consider-
ably in an experimental sort of way, APL is
well suited (see pp. Zz).

There are a number of special "simulation"
languages, notably SIMSCRIPT and GPSS. These

have fa useful, for i in
aimulating events over time, such as "EVENT"
which or draw

lines in time (the simulated time). Simulation
languages generally allow a great variety of
data types and operations on them.

The list-processing fanatics, of course,
insist that their own languages (such as LISP
and SNOBOL) are best. And then there's PLATO
(see p?2(), whose TUTOR language is splen-
did for both formulas and discrete work-- but
allows you only 1500 variables, total (60 bits
.each).

The thing is, any set of assumptions, no
matter how intricate, can be enacted by a compu-
ter model. Anything you can express exactly
can be carred out, and you can see its conse-
quences in the computer's readout-- a printout,
a screen display, or some other view into the
resulting data structure.

Obviously these enactments (or sometimes
"predictions") are wholly fallible, deriving any
validity they may have from the soundness of
the initial data or model.

However, they have another important
function, one which is going to be very impor-
tant in education and, I hope, general public

ding, as get spread about
more widely and become more usable.

The availability of simulation models can

make things easier to understand. Well-set-up
programs, easily throug|

terminals, can be used as Staged Explanato:
Structures and Theoretical Exploration Tools.
The user can build his own wars, his own so-
cieties, his own economic conditions, and see
what follows from the ways he sets them up.
Importantly, different theories can be applied to
the same setups, to make more vivid the conse-
quences of one or the other point of view.

(ndeed, similar facilities ought to be avail-
able for Congress, to allow them to pour a new
tax through the population and see who suffers,
who gains...)

I should point out here that for this pur-
pose-- Insightful Simulation-- you don't always
need a computer. I have in mind the so-called
"simulation games," which if well designed give
extraordinary insights to the players. Allen
Calhamer's brilliant game of Diplomacy, for in-
stance (Games Research, Boston; available from
Brentano's, NYC) teaches more about international
politics than you could suppose possible. I am
also intrigued by a game called "Simsoc," worked
out by a to d the develop:
ment of social structures from a state of random
creation, but I haven't played it. (Clark C.
Abt, of Abt Associates, Boston, has also done
a lot of interesting design here.)

A last point, a very "practical" application.
Simulation makes it possible to enact things with-
out trying them out in concrete reality. For in-
stance, in the lens-design systems mentioned
earlier, the lenses don't have to be actually built
to find out their detailed characteristics. Nor
is it 'y to build circuitry, now,
to find out whether it will work-- at least that's
what the salesmen say. You can simulate any
circuit from a terminal, and "measure" what it
does at any time or in any part with simulated
meters. Similarly, when any computer is des-
igned now, it's simulated before it's built, and
programs are run on the simulated computer,
as enacted within a real computer, to see if it
behaves as intended. (Actually there are some
hot-wire types who insist on building things
first, but one assumes that the more sensible
computer designers do this.)

With automobiles it's harder; but GM, for
inst , the handling characteristics
of its cars before they're ever built-- so that
designers can redistribute weight, change steer-
ing characteristics and so on, till the handling
characteritstics come out the way the Consumers
seem to like.

BIBLIOGRAPHY

Simulation magazine is the official journal of ’
Simulation Councils, Inc., the curiously-
named society of the Simulators. It costs
$18 a year from Simulation Councils, Inc.,
Box 2228, La Jolla CA 92037.

For all 1 know you get annual mem-
bership free with that. I've always wanted
to join but it was always the one thing too
many; but their epnference programs are
sensational. Where else can you hear
papers on traffic, biology, military hardware,
weather prediction and electronic design
without changing your seat?

AP I IC I ICYICYF I I

THAT'S WHAT NACES HORSE RACR-

"Simulation" means almost anything that in
any way rep or ing.
Which is not to say it's a useless or improper
term, just a slippery one.

Examples. Here are ways we could "simu-
late" a horse race:

Show dots moving around an oval track
on a.completely random basis, and declare the
first to complete the circuit The Winner.

Assign odds to individual horses, and
then use a randomizer to choose the winner,
taking into account those odds. (This is how the
PLATO "horserace" game works; see p.MM17.)

Give conditional odds to the different horses,

based on possible "weather conditions." Then
flip a coin (or the qui » igl
randomization) to test the "weather conditions,"
and assign the horse's performance accordingly .

Program an enactment of a horse race, in
which the winner is selected on the basis of
the i ‘of the pes of horse and
rider.

Create a data structure representing the
three-dimensional hinging of horse's bones, and
the interlaced timing of the the horse's gait.
(This hes been done at U. of Pennsylvania on a
DEC 338.) Then have these stick figures run
around a track (or the data structure equivalent).

Using a synthetic-photography system
such as MAGI's Synthavision (see p.},), create
the 3D data structure for the entire surface of a

running horse over time; then make several copies

of this horse run around a track, and make sim-
ulated photographs of it.

And so on.

So don't be snowed by the term "simulation."

It means much, little or nothing, depending.

OPERATIONS
Resedikeq

is an ion of Si in a fairly obvi
direction.

it means the of some
event by puter, O ions R h means

doing these enmtmem; to try out different strat-
egies, and test the most effective ones.

Operations research really began during
World War II with such problems as submarine
hunting. Given so-and-so many planes, what
pattern should they fly in to make their catching
submarines most likely? Building from certain
types of known probability, (but in areas where
"true" mathematical answers were not easily
found), op i T hers could ti
find the best ("optimal") strategies for many
different kinds of activity.

Basically what they do is play the situation
i i

out or ds of times, g it
by computer, and using dice-throwing techniques
to the of all the unpr

parts. Then, after all entities have done their
thing, the program can report on what strategies
turned out to be most effective.

Example. In 1973 the Saturday Review of
something-or-other printed a piece on the solu-
tion, by OR techniques, of the game of Monopoly.
Effectively the game had been played thousands of
times, the dice thrown perhaps millions, and
the different "players" had employed various
different strategies against each other in a varying
mix: Always Buy, Buy Light Green, Utilities and
Boardwalk, etc.

A complete solution was found, the strategy
which tends (over many plays) to work best. I
forget what it was.

Using another technique, the game of foot-
ball was analyzed by Robert E. Machol of North-
western and Virgil Carter, a football personage.
Their idea was to test various maxims of the
game, to find out which common rules about
beneficial plays were true. What they did was
replay fifty-six big-league football games on a
play-by-play basis, rate the outcomes, and see
which circumstances proved most advantageous on
the average. I've mislaid the reprint (Operations
Research, a recent year), and being totally ig-
norant of football can remember none of the find-
ings. Anyhow, that's where to look.(&f-bn-\ Aw\ll

befow,

The earlier explanation of Operations
Research wasn't quite right. It's any systematic
study of what works best. Computers can help.

BIBLIOGRAPHY

Irvin R. Hentzel, "How to Win at Monopoly."
Saturday Review of Science, Apr 73, 44-8.

Virgil Carter and Robert E. Machol, "Operations
Research on Football." Operations Research,
March 1971, 541-544.

g obol
GREAT 1SSUES

Until now, the obscurity of computers

has kept the public from understanding
that anything like political issues were
involved in their use. But now a lot of -
things are going to break. For instance--

NHITHER e FEI?

J. Edgar Hoover's recent death
raised a very serious problem. What
about all those files he had been keep-
ing? Responsible critics of the FBI,
such as Fred J. Cook, have claimed that
Hoover's policy basically consisted of
chasing lone punks (like Dillinger,
Bonnie and Clyde), harassing political
dissenters, and keeping vast unnecessary
records on innocent citizens-- thus vir-
tually creating the vast network of or-
ganized crime in America, which stays
off the police blotters. Thus the ques-
tion of the FBI Succession was an impor-
tant one.

The question has been answered. In
July 1973 Nixon appointed Clarence Kelley,
police chief of Kansas City. After the
previous goings-on-- for instance, Nixon's
seeming to offer the post to Judge Byrne
while he was presiding over the Ellsberg
trial-- this looked to the press like a
staid and uncontroversial resolution.
But was it?

Kelley certainly is aware of tech-
nology. It seems to be he that put dis-
play screens in Kansas City police cars,
created the ALERT system (Automated Law
Enforcement Response Team) and COPPS
(Computerized Police Planning System),
which for your amusement ties into MULES
(Missouri Uniform Law Enforcement System).
(See Melvin F. Bockelman, "On-Line Com-
puters Keeping Things Straight,'" which
describes the Kansas City computer setup.
Communications, June 73, 12-20.) In a
more threatening vein, supposedly the
Kansas City department kept computer
files on "militants, mentals and acti-
vists." (Schwartz article, p. 19.)

What Kelley does is thus of interest
to us all., The big question is whether,

for all his concern with police automation,

he is also concerned with the freedoms
this country used to be about.

"NECESSITY HAS BEEN THE EXCUSE FOR
VERY INFRINGEMENT OF HUMAN FREEDOM,
T IS THE ARGUMENT OF TYRATS:

IT 1S THE CREED OF SLAVES,

EpMUND BuRKE

MILTAR? VseS
OF CoMpuTeRs

i A lot of people think computers are
in some way cruel and destructive. This
comes in part from the image of the com-
puter as "rigid" (see "The Myth of the
Computer," p. 9), and partly because
the military use so many of them.

But it's not the nature of a com-
puter, any more than the nature of a
typewriter is to type poems or death
warrants,

The point is that the military peo-
ple are gung ho on technology, and keen
on change, and Congress buys it for them.

. No way is there room to cover this
subject decently. But we'll mention a
few things.

The Pentagon, first of all, with its
payroll of millions, with its stupendous
inventories of blankets and bombs and
toilet paper, was the prime mover behind
the development of the Cobol business
computing language. So a vast amount is
spent just on computers to run the mili-
tary establishment from a business point
of view.

Of course that's not the interesting
stuff.

The really interesting stuff in com-
puters all came out of the military.

The Department of Defense has a branch
called ARPA, or Advanced Research and
Development Agency, which finances all
kinds of technical developments with
vaguely military possibilities.

It is thus a supreme irony that ARPA
paid for the development of: COMPUTER
DISPLAY (the Sketchpad studies 'af Lincoln
Labs; see p.bhl}); TIME-SHARING (e.g.
the CTSS system,” see p. 4¢); HALFTONE
IMAGE SYNTHESIS (the Utah algorithms: but
see all of pp. bm 32 -39); and lots
more. Some folks might say that proves
it's all evil. I say let's look at cases.
While they have military applications,
that's simply because they have appli-
cations in every field, and the military
are just where the money is.

Just to enumerate a few more mili-
tary things--

Command and control-- the problem
of keeping track of who's done what to
whom, and what's left on both sides,

P j"f"“.j erdeny fknvdl\.

It is a solemn irony that the great
"465L Command and Control System"-- a
grand room with many projectors driven
by computer, only something like those
in "Dr. Strangelove® and "Fail-Safe'--
may be a prototype for offices and con-
ference rooms of the future.

"Avionics'-- all the electronic
gadgets in airplanes, including those
for navigation. (A recent magazine
piece described how wonderful it felt
to fly the F-111-- which has a computer
managing the Feel of the Controls for
you.)

"Tactical systems''-- computers to
manage battlefield problems, aim guns
and missiles, scramble your voice among
various air frequencies or whatever they
do.

"Intelligence'"-- computers are used
to collate information coming in from
various sources. This is no simple prob-
lem-- how to find out what is so from a
tangle of contradictory information;
think about it. Don't think about how
we get that information.

"Surveillance'-- it can't all be
automatic, but various techniques of
pattern recognition (see p.j)WiZ) are no
doubt being applied to the immense quan-
tities of satellite pictures that come
back. (Did you know our Big Bird satel-
lite either chirps back its pictures by
radio, or parachutes them as Droppings?)

0f course, the joker is that all
this obsession with gadgets does not
seem to have helped us militarily at all.
The army seems demoralized, and the navy
losing ground to a country that hardly
even has computers.

QUIS CUSTODIET, HUH?

Boston welfare recipients have been
systematically short-changed for at least
14 years, according to Computerworld (10
Oct 73, p. 2).

A systems analyst recently discovered
that the welfare program was not calcul-
ating cost-of-living increases on a com-
pound basis, as it should have been, but
as a simple increase based each year on
an obsolete original figure.

However, it's too late to ask for
refunds, and anyway not many welfare re-
cipients take Computerworld.

PRAVIOUSLY
" ONPUBLISHED STORY

quite as law-abiding as the R.E.S.1.8.T.0.R.8.
And the temptations are very strong.

One such y s went on a highsch
field-trip to a suburban Philadelphia police
station, and saw a demonstration of the police
remote information system.

The police who were demonstrating it,
not being computer freaks, didn't realize how
simple it was 'to observe the dial-in numbers,
passwords and protocol .

When this 1ad got home, he merrily went
to his in the b and
proceeded to enter into Philadelphia's list of
most-wanted criminals the names of all his
teachers.

A few days later a man came to his house
from the FBI. He was evidently not a regular
operative but a technical type. He asked very
nicely if the boy had a terminal. Then the FBI
man asked very nicely if he had put in these
names. The boy admitted, grinning, that he
had. (Everyone in the school knew it had to
be he.)

The FBI man asked him very, very nicély
not to do it again.

"Of course it didn't do any harm," says
the culprit. "I had them down for crimes like
'intellectual murder.' What could happen to them
for that?"

Does that make you feel better?
- * - L *
PHILADELPHIANS AND CROOKS PLEASE NOTE:

This happened five or six years ago, and
without a doubt the system is by now totally secure
and impenetrable. Let's hope.

[OUSED-Vp ReCORYS:
ﬁc*rsg IN POINT 2

The question of "privacy" in the abstract
isn't really an issue. Who cares if God sees
under your clothes? The problem is what hap-
pens to you on the basis of people's access to
your records.

Margo St. James is a case in point.

Ms. St. James is a celebrated west coast
prostitute, once well known for her activities
with Paul Krassner as "The Realist Nun;" she
is now Chai dam of an called
COYOTE, igning for the riminali
of prostitution.

She originally had no intention of becom-
ing a prostitute. Rather, she learned that
there was a false record of her arrest for pros-
titution; and despite her efforts to clear her
name, the record followed her wherever she
tried to get a job. Finally she said the hell
with it and did become a prostitute.

(Membership is $5 a year. COYOTE,
Box 26354, San Francisco CA 94126)

BLACK AND BLUE
AND RED AlL OVER

The phone system is bruised and bleeding
from the depredations of people who have found
out how to cheat the phone company electronical-
ly. Such people are called Phone Freaks (or
Phreax); articles on them have appeared in such
places as Ramparts, The Realist and Qui. For
no clear reason, the electronic devices they use
have been given various colorful names:

black box: device which, attached to a
local telephone, permits it to receive
an incoming call without billing the
calling party; it "looks like" the
phone is still ringing, as far as the
billing mechanism is concerned.

blue box: device that generates the magical
"inside" tones that open up the phone
network and stop the billing mechan-
ism. Posession of a blue box can

As with so many things, the
phone system was not designed under
the assumption that there would be
thousands of electronic wise-guys
capable of fooling around with it.
Thus the phone system is tragically
vulnerable to such messing around.
The only thing they can do is get
ferocious laws passed and really try
to catch people, both of which are

cl

it is illegal to possess a tone gener-
ator, or to inform anyone as to what
the magical frequencies are-- even
though a slide whistle is such a

tone ,» and any engi
library is said to have the informa-
tion.

red box: device that simulates the signals
made by falling coins.

The fact that the names of these devices
are given here is not to be ¢onstrued as in any
sense approving of them, and anybody who
messes around with them is a fool, playing with
napalm.

Even if people were entitled to steal back
excess profits from the phone company-- the
so-called "people's discount"-- the trouble is
that they mess things up for everyone. We have
a beautiful and delicate phone system, one that
stands ready to do wonderful things for you,
including bring computer service to your home;
even if, for the sake of argument, it is run by
dirty rats, messing around with it is like poi-
soning the reservoir for everybody.

"DATA BANKS"

The term "data bank" doesn't have
any particular technical meaning. It
just refers to any large store of infor-
mation, especially something attached to
a computer.

For instance, at Dartmouth College,
where the social scientists have been
working hand-in-hand with their big time-
sharing project, an awesome amount of data
is already available on-line in the social
sciences. The last census, for instance,
in detailed and undigested form. Suppose
you're at Dartmouth and you get into an
argument over whether, say, divorced women
earn as much on the average as women the
same age who havé never been married.

To solve: you just go to the nearest terminal,
bat in a quick program in BASIC, and the
system actually re-analyzes the census data
to answer your question. If only Congress
had this!

The usefulness should be evident.

Because of the way census data is hand-
led, now, it is not possible to ask for the
records of a specific individual. But this
kind of capability leads to some real dangers.

There is a lot of information stored
about most individuals in this country.
Credit information, arrest records, medical
and psychiatric files, drivers' licenses,
military service records, and so on.

Now, it is not hard to find out about
an individual., A few phone calls from an
official-sounding person can ascertain his
credit rating, for instance. But that is
very different from putting all these re-
cords together in one place.

The potential for mischief lies in
danger to individuals. Persons up to no
good could carefully investigate someone
through the computer and then burglarize
or kidnap. Someone unscrupulous could
look for rich widows with 30-year-old un-
married daughters. Organized crime could
search for patsies and strong-arm victims.

In the face of this sort of possi-
bility, computer people have been worry-
ing for years; noteworthy is the study
by Alan Westin that originally sounded
the alarm, and his too-reassuring follow-
up study of some data-gathering organ-
izations (see bibliography). But the
scary data banks, the ones that evidently
keep track of political dissenters,
aren't talking about what they do (see
Schwartz piece).

Basically, the two greatest dangers
from data banks are organized crime and
the Executive branch of the Federal Gov-
ernment-- assuming there is still a dis-
tinction.

Imagine if
the Watergate mob
had had control over
national data banks.
Enough said.

It may seem odd, but Nixon has said
he is concerned about computers and the
privacy problem. Cynics may joke about
what his concern actually is; but a more
credible stand was taken by vice-presi-
dent Ford at the 1974 National Computer
Conference. Ford expressed personal
concern over privacy, particularly consid-
ering a proposed system called FEDNET,
which would supposedly centralize govern-
ment records of a broad variety.

Not mentioned by Ford was the matter
of NCIC, the National Crime Information
Center. This will be a system, run by
the FBI, to give police anywhere in the
country.access to centralized records.
THE QUESTION IS WHAT GETS STORED. Ar-
rest records? Anonymous tips? (It would
be possible to frame individuals rather
nicely if a lot of loose stuff could be
slipped into the file.)

Many people seem to be concerned
with preserving some '"right to privacy,"
which is certainly a very nice idea, but
it isn't in the Constitution; getting
such a "right" formalized and agreed upon
is going to be no small matter.

But that isn't what bothers me.
Considering recent events, and the char-
acter of certain elected officials whose
devotion to, ‘and conception of, democracy
is lately in doubt, things’ are scarcely
as abstract as all that. Considering how
helpful our government has been to brutal
regimes abroad-- notably the Chile over-
throw, which some say was run from here
(and which used sports arenas for deten-
tion just as John Mitchell did--) we can
no longer know what use any information
may find in this government. Tomorrow's
Data Bank may be next week's Enemies List,
next month's Protective Custodial Advis-
ory-- and next year's Termination List.
(I don't know if you saw Robert Mardian's
eyes on the Watergate hearings, but they
chilled my blood.)

Heather M. David, "Computers, Privacy, and Secu-
rity." Computer Decisions, May 74, 46-48.

Alan F. Westin, Privacy and Freedom, 1967.

Alan F. Westin and Michael A. Baker,
Databanks in a Free Society: Computers, Re-
cord-Keeping and Privacy. adrangle,
siz.s0. Quadrangle,

"Landmark Study of Computer—Privacy Problems
Completed." CACM, Dec 72, 1096~-7.

Complacent review of Westin & Baker.

Herman Schwartz, review of Westin & Baker book

NYTimes Book Review, 8 Jyly 73, 19-20.
Notes that the optimism of Westin

and Baker is based on their ignoring
various "much-feared information centers"
already by the g .

Stanton Wheeler (ed.), On Record: Files and
Do ri Life. Russell
Sage Foundation (NYC), $10.

"Tax Records: First the Farmers; Then?"
Datamation, Dec 73, 105-110.

"How Fair Are Those Fair Credit Guides?"
Datamation May 73, 120-124.

Phil Hirsch, "Computer Systems and the Issue of

Privacy: How Far Away is 19847" Datamation, becTt, 03,

"And the rocket's red glare,
The bombs bursting in air,
Gave proof through the night
That our flag was still there.

"Oh, say, does that star-spangled banner yet wave
0'er the land of the free and the home of the brave?”

m «- F.S. Key

‘wwmh R
wa L

THE ABM

Its name has kept changing, possibly
to 1lull the public, possibly to gull the
Congress. Anyhow, would you believe a
system, totally controlled by computers,
designed to shoot down oncoming missiles?
If you would, read on.

It's been called Nike-X, Safeguard
and goodness knows what. (It's even been
called a "thin shield"-- masculine, huh?
Perhaps Congress would pay more if they
called it the Trojan 4X.) But generally
we refer to it as the ABM (Anti-Ballistic
Missile). It's the anti-missile missile
people have talked about, and in it lie
many interesting morals, possible com-—
parisons, etc., for which there is no
space here.

Western Electric is the prime con-—
tractor. They're the manufacturing arm
of the telephone company, remember, the
same people who make the Princesstm phone.
Of the hundreds of millions of dollars
they are taking in on this project, much
of it has to go back out-- to Univac,
which makes the computers; to Bell Labs,
which guides the project, whose
Whippany, N.J. facility is totally given
over to it; to the rocket-builders and go
on.

The system is a turkey.

Note that in telling you this I am
drawing only on information that is pub-
licly available, and drawing conclusions
from it the way one usually draws conclu-
sions.

Here is how the great ABM is sup-
posed to work.

Immense radars scan over the hori-
zon looking for possible reflections
that might be intercontinental missiles.

The radar images are forever con-
stantly analyzed by computers, \.xs'mg
every trick of Pattern Recognition (see
p- M%)

Aha! Something is coming.

Yes, yes, I'm quite sure now, says
the computer. We have fifteen minutes.

Great doors swing open, and a long
phallic shape arises. It has jagged an-
gular fins, inherited from the smaller
anti-aircraft Nike (we say Nikey) rockets
that preceded it. This missile is called
the Spartan.

It takes off.

The computer system is tracking the
oncoming missile. Here it comes-- it's
dodging now-- the Spartan is turning,
going faster and faster-- they're coming
together—-

Oncoming missile speed: maybe 15,000
miles an hour. Spartan speed: maybe
10,000, who knows. In these few minutes
the Spartan has gone 400 miles.

How's your tennis?

Can you hit a tennis ball fired out
of a cannon?

But now comes the good part.

The Spartan goes off. Yay! It too
contains an atomic bomb.

If it goes off within five miles of
the attacking missile, the hope is that
the attacking missile's thermonuclear
warhead will get heated on one side and
misfire. So it lands in Times Square,
just breaks a few buildings and spreads
radioactive contamination.

@ But wait.
:0(What if Spartan missed.
—~
Oops, sorry, Montreal.
Never fear! Have you forgotten

Sergeant York? Have you forgotten the
Alamo?

59

There is another missile. It is
called Sprint. It is shaped like the
point of a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>